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ABSTRACT

This paper explores a method to innovate the conventional
interaction with a guitar pedalboard. By analyzing muscu-
lar contractions tracked via surface Electromyography (sEMG)
wearable sensors, we aimed to investigate how to dynami-
cally track guitarists’ sonic intentions to automatically con-
trol the guitar sound. Two Recurrent Neural Networks
based on Bidirectional Long-Short Term Memory were de-
veloped to analyze sEMG signals in real-time. The system
was designed as a digital musical instrument that calibrates
itself to each user during an initial training process. During
training musicians provide their gestural vocabulary, asso-
ciating each gesture to a corresponding pedalboard preset.
The selection of the most effective features, in synergy with
the best set of muscles, was conducted to optimize the learn-
ing rate of the system. The system was assessed with a
user study encompassing seven expert guitar players. Re-
sults showed that, on average, participants appreciated the
concept underlying the system and deemed it to be able to
foster their creativity.
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1. INTRODUCTION
The swift progression of wearable technology alongside ad-
vancements in machine learning (ML) methodologies has
opened avenues for innovative interaction paradigms within
live music contexts, centering around the real-time detec-
tion of performers’ gestures. This domain has strong ties
with the embodied music cognition theory, which explores
the connections between physical actions and musical ex-
pression [22]. Embodied engagement with music is a key
element of musical experience, and the gestural properties
of musical sound have been studied from multiple disci-
plinary perspectives, including Human-Computer Interac-
tion (HCI) and the cognitive sciences [14, 37].

Digital musical instruments (DMIs) are based on the cre-
ation of action–sound mappings, in which the relationships
between the physical energy of the input action may not
necessarily correspond to that of the output sound [7]. In
this scenario, gestural interaction design is a non-trivial
problem, and ML techniques are increasingly utilized by
researchers and artists to tackle its complexity in various
ways [37, 32].

ML methods have been leveraged for the real-time analy-
sis of electromyographic (EMG) signals, which are a source
of meaningful information about the user’s sonic intentions
[30]. EMG is a biometric signal that represents muscle ac-
tivity. It has been used in the biological and HCI domains
as a highly sensitive method of capturing human move-
ment. Lately, it has also been found to be an appropriate
medium for sensing musical gesture.[39, 31]. The Surface
EMG (sEMG) is a technique that allows non-invasive de-
tection of muscle activity, without the use of needles (typi-
cally used in EMG medical applications) but instead using
passive electrodes placed on the skin. Several scholars have
utilized such a technique for the creation of a variety of
DMIs [25, 36, 8, 19, 12].

In this paper, we investigate the relation between gui-
tarists’ sonic intentions and their muscular contractions, to
ease the interaction with sound effects without the use of
pedals. We present a proof of concept DMI which adapts
the sound of the guitar based on the muscular activation
of the musician1. We also describe a user study with seven

1A video of the prototye in use is available at https://
youtu.be/8_c5QavFDUA

https://youtu.be/8_c5QavFDUA
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expert guitar players, which aimed to assess the following
research question: Are muscle contractions useful to musi-
cians, as a new form of interaction with a pedal-board, to
encourage exploration and foster creativity?
Electric guitar pedals are commonly seen as a regular part

of the instrument and not as an extension or enhancement
of its characteristics. This is because the effects used in
electric guitars usually have one-dimensional control possi-
bilities, like the Wah-Wah pedal, or only offer the option
to activate or deactivate some previously configured pro-
cesses [10, 24]. Often, guitarists are distracted by the need
to press multiple pedals while playing, to shape the guitar’s
sound. This motivated our research in exploring a strategy
for interacting with sound effects that is different from the
conventional one.

2. RELATED WORKS
Performing robust and accurate EMG signal decoding rep-
resents a critical challenge due to its noisy characteristics.
Various types of research have addressed this problem ex-
ploiting Deep Learning techniques such as: hand gesture
classification [21], [23], silent speech recognition [20], [18],
stroke rehabilitation [26] and robot arm control [1] (for a
review see Buongiorno et al. [6]).
Within the NIME community, various studies have inves-

tigated the role of gesture representation in sound-action
mapping. Various scholars have investigated the use of
sEMG signals to track users’ gestures via wearable devices
that measure bodily behaviors to manipulate digital media
[28, 33]. Most of previous researches are based on forearm
muscles, using the Myo armband device [25, 36, 8, 19, 12],
or other custom-made sensor boards [9].
A relevant example is the air guitar [11], a DMI leverag-

ing the guitarists’ gestures performed in the air to control
a guitar sound emulation engine, using two Myo armbands.
The authors evaluate several excitation categories (excita-
tion is a phase where there is energy transfer between a
music performer and a musical object) to investigate how
action-sound gesture coupling can be used to create a DMI
not relying on a physical controller.

3. METHODS AND MATERIALS

3.1 Data acquisition
To integrate sEMG signals into artistic practices reliably
and robustly, we used the wearable device developed by
LWT32 (see Fig. 1). This wearable computer system en-
ables the tracking of biometric signals from multiple muscle
areas, with a sampling rate of 1000Hz and 22-bit resolution
ADC for 8 channels in a double differential configuration.
The acquired data is then transmitted to the platform anal-
ysis via a wired USB 2.0 communication channel. During
the user study described in Section 5, electrode pads were
placed by following the protocols of the Atlas of Muscle In-
nervation Zone [3], to minimize cross-talk and enhance the
acquisition quality.
For the acquisition and storage of sEMG signals from

the sensor board we leveraged the LWT3’s proprietary data
processing application, which also computes various fea-
tures and provides real-time visualization of muscular ac-
tivities (see Fig. 2). To further enhance data quality, we
implemented an additional pre-filtering stage to mitigate
movement artifacts and electromagnetic interferences dur-
ing live performances. This stage incorporates a fifth-order

2https://lwt3.com/

Figure 1: Data acquisition platform: 8-channels sEMG
wearable sensor board. Two sides, four channels for each
side.

Butterworth bandpass filter (30-300 Hz) to attenuate high-
frequency motion artifacts and a harmonic band-stop Notch
filter (centered at 50 Hz) to suppress power line noise.

Figure 2: Muscular contraction live plots from the data
elaboration application.

3.2 Muscle Selection Process
The selection of appropriate muscles is paramount in ensur-
ing accurate gesture classification, as distinct guitar tech-
niques elicit unique patterns of muscle activation. To es-
tablish a robust muscle selection criterion, we conducted
multiple 30-second acquisitions for each gesture. Then we
selected two low-level features in the temporal domain (that
required lower computational power), from those most widely
used in the literature [29]:

1. Root Mean Square (RMS): is related to the constant
force and non-fatiguing contraction, it reflects power
activation and is directly proportional to the exerted
force. It relates to standard deviation, which can be
expressed as

RMS =

√∑N
k=1 x2

k

N
. (1)

where N denotes the length of the signal and xn rep-
resents the EMG signal in a segment n.

2. Zero crossing (ZCR): is the number of times that EMG
signals cross zero in a window of lengthN . The thresh-
old value is 20 mV. It can be formulated as:

https://lwt3.com/


Figure 3: The models’ architecture, specifying input and output shapes and activation functions.

ZCR =
1

2(N − 1)

N−1∑
i=1

{
1 if x(i) · x(i + 1) < 0

and |x(i) − x(i + 1)| > thr.
0 otherwise

(2)

ZCR is related to slope sign change (SSC) and it gives
a rough estimation in the frequency domain.

After that two consecutive stages were performed: In the
first, the ZCR was used to assess the level of activation over
time of each muscle, during the unfolding of gestures. We
discarded the muscles with ZCR values that fell below a
predefined threshold. Then in the second stage, groups of
eight muscles were evaluated together, selecting the group
with the highest RMS average value.
Through extensive testing, we observed that in a rest-

ing position (with our configuration test), the ZCR values
ranged from 40 to 70, while the RMS was around 2.3 mV
compared to the baseline. These observed ranges serve to
define our heuristic activation threshold: 50 slop change
(ZCR) and 4.6 mV (RMS) into a 500 ms window.
In table 2 the muscles are ranked based on their mean

ZCR and RMS values, we discarded those below the thresh-
olds (i.e., the last six). Muscles with consistently low RMS
and ZCR values were excluded from further consideration.
To refine the muscle selection process and identify mus-
cle activation patterns associated with each guitar gesture,
the ZCR was utilized to evaluate average activation levels
within predefined time intervals. By combining the RMS
and ZCR features, we determined the optimal set of eight
upper limb muscles for accurately classifying each specific
gesture:

3.3 ANNs Design
We applied a supervised learning approach, by developing
two Recurrent Neural Networks (RNN) that work in par-
allel: one gesture classifier and a regression network. The
first classifies the performed guitar techniques dynamically
setting the pedalboard’s sound preset. The other is trained
for regression tasks by providing examples of inputs associ-
ated with desired sound effects parameters’ outputs. Once
the model is trained, the user performs by moving between
(and beyond) the example positions to shape dynamically
the sounds via gestures. The models were implemented us-
ing TensorFlow (version 2.12.0) and the Keras API.

3.3.1 Dataset creation
The system was developed to be intra-user (i.e., customized
for each user), to model the nuances and habits of each
guitarist distinctly. To achieve this, a systematic proce-
dure was employed for training each instance of the system.

Seven distinct guitar techniques were chosen: fingerpicking,
strumming, bending, down picking, alternate picking, tap-
ping, and pull-off/hammer-on. Each technique was paired
with a corresponding guitar riff, serving as a representative
exemplar of its characteristic motion. This pairing ensured
uniformity in movements across diverse participants. The
training process was carried out by following these sequen-
tial steps:

1. Users were instructed to perform the seven pre-selected
riffs. Dual data acquisitions were conducted for each
technique, prompting the subject to play at opposing
levels of muscle contraction. This approach aimed to
capture the maximum and minimum values, essential
for training the regression model tasked with discern-
ing the different levels of contraction exerted during
the execution of the gestures.

2. Each acquisition was executed using an electric gui-
tar, with participants adopting a stationary standing
position. The duration of each session was fixed at 60
seconds, maintaining a consistent tempo of 120 beats
per minute (BPM).

3. Subsequently, a dedicated function was employed to
export a filtered RMS version of each acquisition. This
process facilitates the preservation of maximum and
minimum values for each muscle, enabling subsequent
normalization within the [0, 1] range.

The signals were captured from the eight selected muscles
presented in Section 4.1 using the sensor board presented
in Section 3.1.

Each user’s dataset was normalized between [0, 1] with
a Mix-Max strategy, to ease the inferences extraction by
promoting fair treatment of features, facilitating faster con-
vergence, and enhancing the network’s ability to generalize
its learned knowledge. The dataset is publicly available,
intending to address the lack of public sEMG datasets for
guitar techniques 3.

3.3.2 Models’ Architecture
Figure 3 depicts the two models’ architecture, specifying
the input/out shapes and the activation functions of each
layer. Both architectures are composed of a Bidirectional
Long Short-Term Memory (BLSTM) input layer followed
by two fully connected dense layers. Notably, it has been
demonstrated that incorporating dense layers in conjunc-
tion with the recurrent layer can yield superior outcomes
compared to models solely relying on recurrent layers [16].

3https://github.com/EllDy96/Augmented-Guitar-
Pedalboard

https://github.com/EllDy96/Augmented-Guitar-Pedalboard
https://github.com/EllDy96/Augmented-Guitar-Pedalboard


Hyperparameter Value

Input Time Steps 256

Regularization Strategy L1(factor= 0.001)

Dropout Rate 0.1

Optimization Algorithm Adam

Learning Rate 0.0001

Loss Function Categorical Cross Entropy

Batch Size 32

Early Stopping Monitor ’loss function’ with patience 10

Early Stopping Monitor ’validation loss’ with patience 10

Table 1: Models’ hyperparameter values.

The BLSTM layer, which incorporates an RNN with LSTM
cells, is known for well capturing temporal patterns in ges-
ture recognition tasks using sEMG signals [34]. The bi-
directionality of the BLSTM allows it to capture temporal
dependencies in both the past and future directions, en-
hancing the model’s predictive capabilities [2]. To enhance
the generalization and feature extraction capabilities of the
RNN, two Dense layers were added after the BLSTM layer.
The models also included Dropout layers, which randomly
drop out a certain proportion of neurons during training to
prevent over-fitting.
The two used cost functions were categorical cross-entropy

for classification and Mean Square Error for regression. The
weights of the models were updated using the ADAM opti-
mization algorithm, a combination of gradient descent with
momentum and RMS propagation [17]. The learning rate,
which controls the magnitude of weight updates during train-
ing, was manually selected to ensure optimal convergence
and stability. Additionally, L1 kernel regularization was
applied to the loss function to prevent over-fitting by en-
couraging sparse weight values in the network. The source
code and scripts are openly accessible on Google Colab ??.

3.3.3 Hyperparameter Tuning
We performed an intensive manual search to strike a bal-
ance between model complexity and generalization capabil-
ity. The results are shown in Table 1 (both for classifica-
tion and regression). The goal was to define a lightweight
model suitable for real-time applications to be integrated
into wearable devices. We started from 2 million trainable
parameters and were able to reduce them to 31,971 for the
classifier (450 Kb storage space) and 56,550 for the regres-
sion model (735 Kb). The main factor that enabled this
sharp reduction in parameters, while maintaining high per-
formance, was the change in architecture from standard to
bidirectional LSTM.

Figure 4: Max/Msp patch for sound parameters control.

3.4 Protocol Pipeline
The following steps compose the protocol pipeline (see Fig.
5) for acquiring, processing, and classifying sEMG signals
in real-time to control the guitar sound:

Prefiltering Stage: A prefiltering stage is applied to en-
sure signal fidelity. This stage consists of an anti-aliasing
filter and a high-pass filter (with a cutoff frequency of 5Hz)
applied in cascade.

Data Acquisition and Processing: The wearable board
transmits the signals to a computer system running a pro-
prietary data acquisition platform. This platform performs
crucial operations such as feature extraction and signal pack-
aging. The packaged data is then simultaneously fed into
two RNNs.

Gesture Classification: The first RNN is dedicated to ges-
ture classification, selecting the pedalboard’s preset based
on the recognized gestures.

Effect Modulation: The second RNN operates as a regres-
sion model, enabling continuous modulation of the chosen
effects based on the amount of muscular contraction.

Max/Msp 8 Patch: The predicted parameters from the
RNN models are sent to a Max/MSP patch using the Open
Sound Control (OSC) network protocol. The patch encap-
sulates a series of five Virtual Sound Technology (VST) plu-
gins arranged sequentially to achieve the desired audio ef-
fects and modifications.

Audio Output and Processing: The path audio output is
routed to a PA system.

3.5 Sound Processing Unit
The sound synthesis engine was developed in Max/MSP and
relied on five imported VST plugins:

• Overdrive: Overdrive TSC 1.1 developed by Mercuri-
all with three knobs to control: drive, tone, level.

• Distortion: Distortion Greed smasher developed by
Mercuriall with three knobs to control: drive, tone,
level.

• Chorus: Chorus WS-1 developed by Mercuriall with
three knobs to control: depth, speed, mix.

• Reverb: Pro-R developed by Fab Filter with three
knobs to control: space, pre-delay (ms), mix.

• Delay: Valhalla Super Massive Delay developed by
ValhallaDSP with three knobs to control: delay time
(ms), mix, feedback.

We imported these five VSTs with vst object, connect-
ing them with the data elaboration platform via OSC mes-
sages [38]. The patch receives the output of the two RNN
models through two OSC messages: one for setting the sonic



Figure 5: This image shows the entire signal flow, from its generation and acquisition from the user’s body to the modification
of the sound by the Max/Msp patch.

preset, the other containing a list of float in a [0, 1] range
for the real-time parameters modulation.
As it is possible to notice from Fig. 4, the patch has

three knobs for each VST, allowing the modification of the
effect’s main parameters. These knobs are directly con-
trolled by OSC messages allowing the regression network to
change the pedalboard’s parameters. The artist can save
and recall sonic presets using the preset object and acti-
vate/deactivate each VST with the toggle button.

4. EXPERIMENTAL SET UP
The experimentation unfolded in three distinct phases, each
incorporating multiple muscle acquisitions carried out with
the wearable sensors boards described in Section 3.1:

1. Muscle Selection

• Objective: To establish systematic criteria for
muscle selection and assess the optimal upper
limb muscles for accurate guitar gesture classi-
fication;

• Result: The identification of eight specific arm
muscles that significantly enhance classification
outcomes (see Sections 3.2 and 4.1).

2. Mapping Strategy

• Objective: To define the mapping of gestures to
sound;

• Result: The conceptualization and implementa-
tion of two RNNs architectures, encompassing
the training process, dataset, and Max/MSP patch
(see Sections 3.3.1, 3.3.2 and 3.5).

3. Evaluation

• Objective: To assess the system’s performance
and effectiveness across multiple guitarists;

• Result: Execution of a validation questionnaire
to gauge the system’s efficacy (see Section 5) to-
gether with the computation of the objective per-
formance (Section 4.3).

In the following sections we present the results of each of
these steps.

Figure 6: A picture of a participant during the acquisition
session with electrode pads placed on arms.

4.1 Selected Muscles
Following the selection strategy described in Section 3.2, we
performed an evaluation experiment to select the eight most
relevant upper limb muscles for guitar technique classifica-
tion. Twelve upper limb muscles were analyzed (see Fig. 7):
[Left Flexor Carpi Radiali, Left Extensor Carpi Radialis,
Left Bicep Brachii Short Head, Left Brachioradialis, Right
Flexor Carpi Radialis, Right Extensor Carpi Radialis, Right
Bicep Brachii Short Head, Right Anterior Deltoid, Left An-
terior Deltoid, Right Triceps, Left Triceps, Right hand, Left
hand, Right Brachioradialis]. Among those, the following
revealed to be the best for our purpose:

1. Three forearm muscles: including the flexor carpi ra-
dialis the extensor carpi radialis and brachioradialis,
they are responsible for the wrist movement during
guitar playing, which is particularly activated during
techniques such as strumming, arpeggio, tremolo pick-
ing, alternate picking and down picking.



Muscles

Gestures
Tapping Arpeggio Bending Strumming Pull-Off Down pick Alternate pick

ZCR RMS ZCR RMS ZCR RMS ZCR RMS ZCR RMS ZCR RMS ZCR RMS

Left Flexor C. Radialis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Left Extensor C. Radialis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Left Bicep B, Short Head ✓ ✓ ✓ ✓

Left Brachioradialis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Right Flexor C. Radialis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Right Extensor C. Radialis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Right Bicep B. Short Head ✓ ✓ ✓ ✓

Right Anterior Deltoid ✓ ✓ ✓ ✓

Left Anterior Deltoid

Right Triceps

Left Triceps

Right hand

Left hand

Right Brachioradialis

Table 2: This table highlights which is the best muscle to classify a specific guitar gesture based on ZCR and RMS mean
values for a standard right-hand guitarist.

Figure 7: The eight selected muscles to classify guitar ges-
tures.

2. Right anterior Deltoid: This muscle is involved in shoul-
der movement, which is important for detecting tech-
niques such as down-picking, strumming, and chord
changes (i.e., left-hand movement when changing chords).
We noticed that the anterior right deltoid muscle has
slightly higher values, than the lateral, as it tends
to be more consistently active during guitar playing;
while the left deltoid is completely discarded for low
activation proved by low values of both ZCR and RMS.

3. Biceps: These muscles are involved in elbow move-
ment, which is highly activated during techniques such
as bending and vibrato, and they are responsible for
elbow flexion strongly activated during string bending
and down picking.

As a result, We discarded the left deltoid and the right
brachioradialis, which fell behind the thresholds defined in
3.2. The hand muscles showed too little SNR due to cross-
talk due to higher tissue density concentration in a smaller
area.

4.2 Gesture To Sound Mapping

Gesture-to-sound mapping involved two mapping strategies
in parallel: one to set the pedalboard preset through ges-
ture classification (between clean, crunch, or heavy) and the
other to modulate a set of parameters (e.g., Mix of Reverb,
Drive of Overdrive, etc.) by analyzing the level of muscle
contraction. As presented in Section 3.5, inside the Max
patch we defined three sonic presets: clean, crunchy, and
heavy. We associated each with guitar gestures commonly
played with that specific sound. The classification model
set the preset according to the techniques performed. The
regression model modulated six parameters via OSC mes-
sages: the overdrive and distortion’s drive level, the reverb’s
mix and room size, and the delay time and chorus’ mix.

4.3 Technical Evaluation
We evaluated the classification and the regression perfor-
mance using two validation metrics ([15, 5]): accuracy and
Root Mean Square Error (RMSE). The system reached a
value of 0.9 for accuracy and 0.09 for RMSE in the best-
performing subject. Fig. 8 presents the two models’ met-
rics’ distribution across seven datasets (i.e., the seven par-
ticipants). The classifier performed a mean validation and
testing accuracy of 0.77 (SD = 0.058) and 0.78 (SD = 0.065)
respectively, while the regression model performed an aver-
age validation and testing RMSE of 0,1378 (SD = 0.029)
and 0.1382 (SD = 0.031). There are two positive factors
that we can notice from Fig 8: the residuals’ means are
centered around zero (i.e., they have a normal distribution,
hence the regression is working correctly), and the testing
accuracy shows a positive skew distribution (i.e., the accu-
racy values tend to be high).

5. USER STUDY
The experiment involved seven experienced male guitarists
(aged between 21 and 37 years old, mean age = 28.25,
SD = 5.27, mean height = 177 cm). They had an aver-
age musical experience of 15 years. All of them deemed
themselves intermediates or experts and no one had pre-
vious injury in the upper limbs. All experiments were exe-
cuted leveraging right-hand solid-body electric guitars, with
participants adopting a stationary standing posture, as de-
picted in Fig. 6. The experiment consisted of the follow-
ing three stages. To begin, each participant followed the



(a) Classifier’s metrics distribution.

(b) Regression model’s metrics distribution.

Figure 8: Metrics distribution of the classifier (a) and the
regression model (b) across seven datasets.

steps described in Section 3.3.1 to create a training dataset.
Subsequently, the participant assessed the system by ex-
perimenting with a backing track while alternating between
the various techniques employed in the training stage. Fi-
nally, a customized questionnaire, designed in compliance
with DMI assessment forms developed within the NIME
community [4, 27], was used to document the participant’s
experience. The questionnaire was composed of two parts.
The first part consisted of the following nine close-ended
questions evaluated on an 11-point Likert scale (coupled
with short comments) in order to evaluate some constructs
typical of the DMI research community (e.g., playability,
expressiveness, effectiveness, etc.):

1. Enjoyability: How enjoyable was your experience while
trying the system?

2. Playability: How much control did you feel while using
the tool?

3. Learnability: How easy was learning to use it?

4. Expressiveness: How much did it help you to enhance
your expressiveness?

5. Novelty: How much novelty does it introduce to your
performance?

6. Effectiveness: How much was it able to track your
sonic intentions and translate them into an effective
combination of effects?

7. Wearability: How not invasive do you consider the
system?

8. Adaptability: How much was the system able to im-
prove following your feedback after the first try?

9. Usability: How confident would you feel using it in a
live performance?

The second part comprised four open-ended questions:

1. Main Limitations: What are the main limitations of
the system to use it in a live scenario?

2. Overall Experience: How was the experience of us-
ing muscular contractions to interact with the pedal-
board? Do you think it is a good way to enhance your
expressiveness?

3. Added Value: What is the added value of the system
compared to the standard interaction and how would
you integrate it into your artistic practice?

4. Improvements: How would you improve the system?

The distribution results of the close-ended questions are
shown in Fig. 9. We sorted the key aspects decreasingly
by median value to better highlight the items in which the
system collected the highest ratings. In the following, we
report some of the comments made by participants to mo-
tivate their ratings.

Figure 9: Questionnaire results.

Novelty: all the participants shared a strong apprecia-
tion for the idea behind the system, considering it as highly
innovative (e.g., “I believe it would be a great inclusion in
improvising, or as a training tool. The system was very in-
teresting”; “After an initial moment of general discomfort,
I ”embraced” the responses of the system and started to play
with it, as I was playing along with an (almost) autonomous
external agent. This approach introduced a lot of novelties
in my playing and I appreciated it.”; “Changing sound with-
out iteration with a pedalboard makes the performance more
organic”; “A musician can concentrate only in the part she



is playing while exploring the sounds of the pedalboard, in-
teracting with it”; “it would make a difference”).

Enjoyability: Five guitarists gave a high grade, while the
others a medium one (e.g.“There were times where the sys-
tem did exactly what I wanted it to do.”; “it was cool, I felt
super comfortable”) One participant deemed the experience
not so enjoyable (e.g. “I am not very much interested in this
kind of technologies. Furthermore, being a first prototype it
was not so easy and practical and didn’t work so much in
my case.”).
Learnability: Four guitarists give a high-grade sharing

a fast learning curve (e.g., “Just as with all guitar instru-
ments and effects it takes a moment to adjust, which in this
case is very brief ”; “Once you try the various techniques
and understand the forte-piano dynamics of the device you
go like a charm”) one participant complains of too many
muscle contractions mapped on small differences in sound (
“The system was intuitive and easy to figure out. However,
there is a considerably large number of muscle contractions
mapped to different subtle changes in effects. It is difficult
to remember which muscle controls which parameter upon
the first trial.)
Expressiveness: Three users gave high grades and two

a medium one (e.g., “The potentials are endless”; “In my
opinion, it is super creative, if brought to a certain level of
safety I would also use it during a live performance.”). One
guitarist who gives a low score said “the extreme focus of
muscle contractions was distracting me from the instrument
and my playing”).

Adaptability: It received similar grades to the expressive-
ness (e.g., “the more I played it, the more I understood how
to use it, the more fun it was”). One participant gave a
valuable feedback to improve the performance by chang-
ing the dataset creation procedure: “My feedback was to
train the system letting the player behave as natural as pos-
sible, so to avoid having a forced “fake” baseline”. He was
against the idea of instructing all the participants to play
the same riff for each guitar technique. Another participant
complaint about preset change latency, suggesting to collect
more data to improve the performance “What I can say is
that the system was overall injecting lots of latency in the
process [..] I was able to identify two or three situations in
which it follows my techniques [..] It would be interesting
to further experiment with it tho, and see if and how the
overall accuracy could be improved, possibly recording more
data.”

Playability: Five participants gave a medium or high grade
(e.g, “The fact that effects could have been modulated so eas-
ily is mind staggering!”). Two participants who gave a low
grade agreed about a too high muscle exertion needed: “I
had a focus on my muscle contractions a lot to get the sys-
tem to recognize them. This extreme focus on muscle con-
tractions was a distraction from playing my instrument.”
and the other “The muscular effort I had to put into the
system was quite high: therefore, I lost control over my play-
ing while trying to control the sensors. Indeed, usually, a
trained guitar player tends to release muscular tension as
much as possible while playing technical passages and con-
centrate on small, fluent movements.”.

Effectiveness: Two guitarist give an high grade (e.g., “it
behaved really well, I did not expect such incredible efficiency
and effectiveness, I had never tried something like this and
was impressed”). Two gave a low grade (e.g., “I was rarely
able to effectively drive the system towards the results I had
in mind. Indeed, I preferred to let the system to guide me
and play more freely.”)
Usability: One guitarist suggest to change the paradigm

by using the system in a different way, not only to change

preset and parameters (citing: “I would probably like to use
the system in a quite complex scenario, in a creative and
interactive way, rather than switching my pedals [..] a per-
formance entirely based on a system like that, in which the
performer can focus towards a complex interaction with the
system, would be far more interesting to me.”. Another gui-
tarist appreciated the system for solo concert (“Very confi-
dent in case I play solo, in band contexts it would take more
time to adapt”).

Wearability: It is the Achilles heel of the system, two pe-
titioners shared a perception of fragility due to many cables
(e.g., “It was very invasive as you have to wear many sen-
sors.”); Two others did not have any problem on this side
(e.g., “It did not bother me much wearing the equipment as
the experiment proceeded”).

Concerning the open-ended questions, the following con-
siderations were made by participants:

Discomfort. Firstly, all participants mentioned that the
main limitation of the system is the poor wearability which
creates a sense of insecurity in movement due to the intru-
siveness of the sensors and cables and the perceived fragility.
Two guitarists mentioned the extreme muscle contraction
needed to trigger the classifier.

Experience appreciation. On average, participants consid-
ered the overall experience as interesting. However, three
of them are skeptical of the classifier due to the latency in
changing preset and the extreme contraction needed (e.g.,
“It was an interesting experience to use the system. I believe
the regression component would be a very interesting tool to
use. However, I am skeptical about the classification”. A
guitarist reported that the system could be very useful ap-
plied to a bilateral interaction not only for the objective of
modulating parameters and switching the pedalboard pre-
set (mentioning his words: “I think that this system could
be fruitfully employed in an interactive context, in which the
performer dialogues with it, more or less consciously, simi-
larly to what I was trying to do at the end of the experiment.
That I think would be particularly interesting”.)

Added Value. Four guitarists appreciated the tracking
of the guitar feelings and defined the tool as an innovative
way to express creativity and explore art (e.g., “New ways
of interacting with music could lead to new ways to express
art and new ways of exploring the art. This aspect can be
interesting!”).

Features requests. A major suggestion to improve the
system was the enhancement of the normalization strat-
egy to avoid extreme muscle contraction to change presets
(e.g., “I would suggest that you first ask the musicians to
play some defined pieces/techniques naturally with the sen-
sors. Thereby you can obtain the minimum, maximum, and
most importantly, the median and standard deviations of
each muscle contraction. I believe this could eliminate the
need for very intense muscle contractions that I experienced
during the experiment”).

6. DISCUSSION
Taken together, the results of the user study showed that
on average the system was conceived as useful by partici-
pants in enhancing their creative process. We would like
to highlight a number of technical limitation that affected
the system’s performance and are helpful for upcoming up-
grades.

Unstable classification performance. The unstable classi-
fication performance can be attributed to the noisy nature
of the sEMG, which leads to a low signal to noise ratio.
Crosstalk between adjacent muscles, electromagnetic distur-
bances, and cable movement artifacts all increase the likeli-



hood of extraneous noise entering the sEMG signal. In this
prototype, users suffer from the inconvenience of carrying
several not shielded cabled electrodes. LWT3 is developing
a new sensor board that incorporates the cables into a com-
fortable, stretchy, shielded suit in order to address this issue
and improve wearability. We experienced a high variance
between the best classification accuracy and the worst (0.88
against 0.69). Musicians who initially showed low interest
performed the worst, being skeptical about stepping out of
their comfort zone during the evaluation phase. Further-
more, the best classification accuracy was achieved when
musicians were asked to interpret the given riffs as much
as possible (even changing it a bit) to better model their
guitar style.
Little training data. The time constraints involved in cre-

ating the intra-subject dataset result in little training data,
lowering the performance. To achieve the best performance
the system has to be trained multiple time by each user in-
dependently. For this reason, we plan to add an Interactive
Machine Learning (IML) approach to the training process
that will allow users to train the system by their own. IML
is a supervised learning technique that designs and imple-
ments algorithms to ease the learning process with the help
of human feedback. One benefit of IML is that the mapping
between gesture and sound can be interactively “shown” by
the user to the system [13], rather than being manually
coded which requires specialized knowledge not often found
among musicians [37].
Embedded systems target. We developed the two RNNs

to be lightweight (as described in 3.3.3), with the aim of em-
bedding the system into wearable devices with low storage
and computational power. Removing this constraint and
increasing the models’ complexity (i.e., by adding layers)
would improve the overall performance.
Latency. The latency exhibited by the system stems from

its underlying architectural design. Specifically, the inher-
ent processing mechanism involves two RNNs analyzing a
window of 256 samples at a time before generating an in-
ference, resulting in a delay of 256 milliseconds (ms) at a
sampling frequency of 1000 Hz. Furthermore, the system
requires an additional 50 ms to analyze a new window us-
ing standard laptop hardware. Consequently, the cumula-
tive latency for each inference amounts to about 306 ms.
Attempts to mitigate latency by reducing the window size
proved ineffective as it compromised the system’s perfor-
mance. Theoretically, RNNs benefit from longer windows
for enhanced prediction capabilities, thus necessitating a
trade-off between predictive accuracy and latency. Through
extensive tests, we experimentally determined that a win-
dow size of 256 samples yielded the optimal compromise.
It is worth noticing that the system is not engineered to
achieve real-time, audio-rate latency; rather, its primary
objective is to seamlessly adapt the guitar’s sound to the
musician’s gestures. The intention is not to replace standard
pedal interactions with faster alternatives, but to introduce
an additional method of interacting with effects, capable of
dynamically adjusting effect parameters to align with the
musician’s sonic intentions during performance. The sys-
tem is intended for use in conjunction with a pedal board,
particularly during moments of exploration, improvisation,
and soloing. The overarching goal is to facilitate a dialogue
between artificial agents and musicians, fostering the emer-
gence of novel effects superposition and thereby enhancing
creativity.
Lastly, our study also presents a limitation of the rela-

tively low participants number. A larger pool of partic-
ipants could have potentially provided other insights. A
larger pool of participants, would allow one to overcome

the intra-user nature of the system, and train it in an inter-
user manner with a single big dataset. Furthermore, our
study involved only males. A larger number of participants
and a more gender-balanced study would make our results
more generalizable. Despite these limitations, the achieved
results suggest that the system was effective in demonstrat-
ing the potential of the proposed interaction strategy. Our
plan is to extend this protocol to other instruments and
musicians in the future.

7. CONCLUSIONS
The objective of this research was to introduce a system
that provides guitar players with a new way to interact with
their sound effects. Specifically, we aimed to investigate how
muscle contractions can be useful to guitar players as a new
form of expression with respect to the conventional use of
effects pedalboards. To enhance the standard pedal inter-
action, we developed a DMI that automatically adjusts the
sound according to the performed gesture and exerted force.
With the proposed system guitarists can modulate differ-
ent effects’ parameters by changing the amount of muscular
contraction. The muscle contractions are thus used as an
expression pedal. This approach is in contrast with the typ-
ical guitar pedalboard usage, where the guitarist must set
all the effects parameters prior to a performance.

We presented a selection of the best muscle groups for gui-
tar gesture classification, to increase the classification per-
formance. By leveraging this selection, the system was able
to control a set of sound effects according to the user’s sound
intention (after an initial training stage), consequently chang-
ing the sound of the guitar during a performance.

To evaluate the system, we conducted a user study with
seven experienced guitarists. Overall, results suggested that
the proposed form of interaction can represent an alterna-
tive means to change the sound of the guitar, providing
guitar players with a creative way to enhance their expres-
siveness.

In future work, we plan to extend the protocol to other
musicians (e.g pianist or wind instruments) leveraging the
potential of full body mapping offered by the custom acqui-
sition board developed by our partner LWT3. Furthermore,
we plan to increase the classification’s robustness, by uti-
lizing the sEMG in conjunction with inertial measurement
unit’s sensors.

Leveraging the Internet of Musical Things paradigm [35],
we also plan to extend the use of our method to the real-
time control of different types of musical devices wirelessly
connected to the sEMG wearable device (e.g., smoke ma-
chines, stage lights), thus giving musicians an additional
means to express themselves and create novel forms of live
music performances.
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