
Real-Time Pattern Recognition of Symbolic Monophonic Music
Nishal Silva

Department of Information Engineering and Computer
Science, University of Trento

Trento, Italy
nishal.silva@unitn.it

Luca Turchet
Department of Information Engineering and Computer

Science, University of Trento
Trento, Italy

luca.turchet@unitn.it

Abstract
This paper investigates the real-time detection of predefined mono-
phonic patterns from the MIDI output of a digital musical instru-
ment. This enables the development of instruments and systems
for live music, which can recognize when a musician plays a cer-
tain phrase and repurpose such information to trigger external
peripherals connected to the instrument. Specifically, we compare
the recognition performance of Dynamic Time Warping and Re-
current Neural Network-based approaches. We employ different
representation formats of musical data to optimize the efficiency of
each computational method. To evaluate the algorithms, a novel
dataset is introduced which includes recordings from 20 keyboard
players and 20 guitar players. The evaluation focuses on the algo-
rithms’ ability to recognize patterns amid variations that impede
a straightforward one-to-one comparison. The results reveal that
both methods perform well in detecting up to 3 distinct patterns.
However, as the number of different patterns increases up to 10,
dynamic time warping exhibits a negative correlation with the
recognition performance, while the recurrent neural network main-
tains high detection accuracy of approximately 98%. Taken together,
our findings demonstrate the potential of machine learning in han-
dling complex musical patterns in real-time, paving the way for
novel applications involving smart musical instruments.

CCS Concepts
• Applied computing → Sound and music computing; • Com-
puter systems organization → Embedded and cyber-physical
systems; • Information systems→Music retrieval.

Keywords
SmartMusical Instruments, Real-Time Pattern Recognition, Internet
of Musical Things

ACM Reference Format:
Nishal Silva and Luca Turchet. 2024. Real-Time Pattern Recognition of
Symbolic Monophonic Music. In Audio Mostly 2024 - Explorations in Sonic
Cultures (AM ’24), September 18–20, 2024, Milan, Italy. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3678299.3678329

This work is licensed under a Creative Commons Attribution International
4.0 License.

AM ’24, September 18–20, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0968-5/24/09
https://doi.org/10.1145/3678299.3678329

1 INTRODUCTION
The presence of repeating patterns is a fundamental and impor-
tant characteristic of music. Human listeners recognize structure in
music through the perception of repetition and other relationships
within a composition [9, 24, 33]. The field of Music Information Re-
trieval (MIR) has explored the computational detection of musical
patterns extensively, leading to various applications such as audio
fingerprinting, indexing, plagiarism detection, music classification,
and recommendation systems. Various authors have proposed al-
gorithms capable of taking a piece of music as input and producing
a list, visualization, or summary of repeated patterns as output
[7, 8, 13, 14, 17, 20]. However, limited attention has been given to
real-time implementations: where analysis must be done as soon
as the musical pattern is produced, typically by a single musical
instrument. This case is particularly challenging as it is not possible
to rely on pre-processing or post-processing techniques typically
employed in offline contexts.

Real-time pattern detection holds significant importance in the
realm of Internet of Musical Things (IoMusT) applications, which
fall at the confluence of the Internet of Things and music technol-
ogy domains [31]. This is particularly true for applications centered
around the so-called smart musical instruments [30]. These digital
musical instruments possess wireless connectivity capabilities fa-
cilitated by embedded computing systems specifically designed for
real-time audio processing and networking tasks. However, to date,
little research has been conducted on such scenarios envisioned in
the context of the IoMusT, primarily due to the limited availability
of appropriate real-time tools that are computationally efficient
enough to operate on embedded systems with constrained capabili-
ties. These constraints include limited computing power, memory,
I/O ports, and the need for minimum power consumption.

The goal of the present study is to develop a real-time mono-
phonic pattern detection system to facilitate the development of a
smart musical instrument capable of identifying the occurrence of
musical patterns from its output in real-time and repurpose that
information as controls for connected peripheral devices (such as
smoke machines, stage lights, visuals on screens, as well as smart-
phones of audience members in participatory live music contexts).
The core of the smart musical instrument will be an embedded
computing device running the pattern detection algorithm reported
hereinafter, with wireless connectivity to transmit control mes-
sages.

Most musicians have a library of licks from which they borrow
during a solo or improvisation. With access to such a smart musical
instrument, a musician can map each musical pattern ((or lick)), to
a digital control message (e.g., Open Sound Control, MIDI). The
pattern detection algorithm is able to transmit the control message
associated to each pattern upon detection. Thus, the musician could

308

https://doi.org/10.1145/3678299.3678329
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3678299.3678329
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678299.3678329&domain=pdf&date_stamp=2024-09-18

AM ’24, September 18–20, 2024, Milan, Italy Nishal Silva and Luca Turchet

control external devices using the music played on their instrument.
With the work presented by this paper and its subsequent develop-
ments, we aim to provide musicians with a creative tool targeting
live performance, which supplements their sonic output.

One of the primary challenges we faced was establishing a defini-
tion for a musical pattern. It is highly unlikely that a musician will
play the exact sequence of notes each time. There will be subtle
variations in time and pitch due to the human nature, and there
will also be variations that the musician does on purpose to add
some expressiveness to the performance. The developed algorithm
should be able to identify musical patterns despite any expressive
variations. For this purpose, as well as to evaluate the proposed
detection methods, we created a novel dataset of 4000 patterns and
related expressive variations recorded from musicians. The motiva-
tion behind this stems from the lack of human-made datasets with
pattern repetitions and expressive variations. The dataset consists
of recordings made by 20 keyboard players and 20 electric guitar
players, as these are arguably the two most widespread musical
instruments used today.

In this paper, we present a comparison between a Dynamic Time
Warping (DTW), and a Recurrent Neural Network (RNN) based
approach. The incoming symbolic music is represented using a
matrix-based method, as well as a sampled discrete time series.
The different representation formats of the musical data has been
selected to exploit the maximum efficiency of each computational
method.

The DTW method is a one to one similarity check against a
ground-truth pattern. However, the RNN method requires the ade-
quate availability of training data, which in our case is expressive
variations of eachmusical pattern. As it is impractical for a musician
to play many repetitions of each pattern for training, we present
a rule-based model to generate melodic and expressive variations
of a given ground-truth pattern. The rules were set after careful
study of the variations present in the dataset, and the model is
able to create a synthetic training set which mimic the real-world
expressive variations of each musical pattern.

In summary, the contributions of this study are:
• A comparison between DTW and RNN based algorithms to
detect the presence of previously defined musical patterns
from an incoming stream in real-time;

• A novel, comprehensive dataset of musical patterns along
with repetitions containing expressive variations;

• A rule-based computational model to generate expressive
andmelodic variations of a given ground truth, to construct a
synthetic training dataset for machine learning approaches.

2 Related Works
Various studies have investigated the detection of repeated pat-
terns in music. However, most of these studies are aimed towards
the detection of unknown patterns in recorded music. In recent
years, the MIREX1 task “Discovery of repeated themes and sections”
has served as a platform for researchers to submit their work on
pattern detection. There are multiple methods presented which
primarily cater to the discovery of previously-unknown patterns
and establishing a hierarchy of their significance.
1https://www.music-ir.org/mirex

The study reported in [6] presents a method able to find both
monophonic and polyphonic patterns along with repeated sections
in symbolic representations of music through a geometric approach.
Such a method inspects all displacements between note pairs, i.e.,
if there is a pattern occurring twice in the piece, A and B - the
distances from all notes in A to their counterparts in B should be
the same.

The authors of the study reported in [19] detail a point-set com-
parison algorithm where the music is presented in the form of a
multi dimensional point-set. The experiments deal with the poly-
phonic version of the JKUPDD dataset. The authors introduce the
maximal translatable patterns vector - which is the set of points in
the dataset that can be translated by a vector to give other points.
The method presented is a greedy compression algorithm that is
able to find the best maximal translatable patterns, append them to
a new vector, and remove these points from the dataset.

The method presented in [22] identifies the repetitive musical
patterns of a given music piece through a self similarity matrix and
is able to operate on audio or symbolic representations. The signal
is windowed and a chromogram is obtained for each window, and
the key-transposition invariant self-similarity matrix is computed.
A scoring and threshold is performed followed by a grouping by
occurrence.

The algorithm described in [16] finds repetitions of sequential
patterns from monophonic sequences represented in a symbolic
format. The algorithm progressively analyzes the musical sequence
through one single pass. The analysis is carried out for each suc-
cessive note of the sequence. For each new note to the algorithm, it
is checked 1) if pattern occurrence(s) ending at the previous note
can be extended with the new note; 2) if the new note initiates the
start of a new pattern occurrence.

The system proposed in [23] is intended for pattern discovery in
symbolic representations of monophonic music and it introduces
the compositional hierarchical model to provide a hierarchical rep-
resentation of the audio signal. The input to the system is a symbolic
representation of the music signal, consisting of a set of pitches,
each defined by an onset and an offset. The model first produces
compositions of two pitches, then three, and so forth. A statistical
approach is employed to retain the compositions which cover the
most information in the input layer. Based on the composition’s
occurrence, the learning process retains the compositions which
are more frequently activated.

The work reported in [33] explores the different features humans
would use to categorize songs into groups. The authors have identi-
fied that the contour, rhythm, and motifs of a melody are important
in establishing a similarity between melodies. In particular, the
re-occurrence of short characteristic motifs is an important factor
in establishing the similarity of songs that belong to the same tune
family. The authors present an annotated dataset of 260 folk songs
categorized into 26 tune families. In computational approaches to
the study of variation among folk song melodies from oral culture,
both global and local features of melodies have been used. From a
computational point of view, the representation of a melody as a
vector of global feature values, each summarizing an aspect of the
entire melody, is attractive. However, from an annotation study on
perceived melodic similarity and human categorization in music

309

https://www.music-ir.org/mirex

Real-Time Pattern Recognition of Symbolic Monophonic Music AM ’24, September 18–20, 2024, Milan, Italy

presented by the same work [33], it followed that local features of
melodies are most important to classify and recognize melodies.

The study presented by [32] compares between the global and
local features in the classification of folk songs. The study, through
an annotation study, investigates the importance of global features
which summarize a melody as a vector from a computational point
of view, and the importance of local features in the perception of
similarity and human categorization. The categorization uses a
nearest neighbor classification as well as a Euclidean distance. The
study concludes that local features carry more melodic informa-
tion than global features, and hence locality is a crucial factor in
establishing similarity among folk song melodies.

The study conducted by [11] proposes a generalized skipgram
model which allows arbitrary cost functions, filtering, recursive
and memory efficient applications. As stated in the study, it is pos-
sible to employ skipgrams for the discovery of repeated patterns of
close, non-simultaneous events or notes due to the the generaliza-
tions and optimizations made. The algorithm operates on symbolic
representations of polyphonic music, and has been evaluated on
a dataset containing several piano sonatas of Wolfgang Amadeus
Mozart in MIDI format [11].

A method to detect repeating patterns in audio versions of Indian
music is presented in [29], which utilizes an entire structure, as
opposed to a note based repetitions. Features such as mel-frequency
cepstral coefficients, modulation spectral features, and jitter are
calculated to reduce the computational time observed in signal
level comparison. The audio is split into frames, and a dynamic
time warping is used to measure the similarity between frames.
The study states that songs with high complexity contain longer
patterns that repeat less often, and songs with low complexity
contain shorter patterns that repeat more often.

A method to automatically detect repeating patterns in poly-
phonic music in the JKUPDD database, in audio or symbolic repre-
sentations is presented by [34], using a variable Markov oracle. The
study uses chroma features which are processed based on musical
heuristics such as modulation, beat-aggregation, etc, and fed into
the variable Markov oracle based framework.

The study reported in [15] presents a method based on large pre-
trained audio neural networks. The neural networks are trained on
the large-scale AudioSet dataset, and is capable of being transferred
to other tasks. The authors have transferred the pretrained audio
neural networks to several pattern recognition tasks using several
different datasets [15].

The authors of [10] present a method that models human judge-
ment of what constitutes a significant pattern by incorporating
annotations of repeated patterns, avoiding the need to design heuris-
tics. The system works on symbolic representations of monophonic
music, and has been evaluated on the Meertens Tune Collection
Annotated Corpus dataset [10]. The algorithm uses a neural net-
work trained to detect a low dimensional embedding of the feature
space, that maps passages of music close together when they are
occurrences of the same ground-truth pattern, based on human
annotations.

The work described in [24] presents a hypothesis that fusing
the output from various musical pattern discovery algorithms will
improve the pattern discovery results. The study presents a method
to combine the output from ten state-of-the-art algorithms using

the MIREX dataset, and the annotated corpus of the Dutch song
database [24], which are human annotated, and presents a meta-
analysis of the (dis)similarities among pattern discovery algorithms’
output.

The authors of [5] propose a correlation-based method to deter-
mine the similarity between songs. A statistical operation, named
the correlation coefficient is introduced and evaluated on a datset
of Indian classical music-based songs. The computation is based on
the occurrence of 16 fundamental frequencies between two songs,
and is aimed toward the development of a music recommendation
system for music therapy applications.

Methods of unknown pattern discovery are usually designed to
determine if repeating patterns are present in entire compositions,
and require prior knowledge of the composition in its entirety to
operate efficiently. However, as we are implementing a system to
be used in a live environment with no knowledge of the incoming
notes beforehand (but with the knowledge of which patterns to
detect), solutions presented in existing literature cannot be used to
accomplish our desired task.

In our earlier study [27], we presented a comparison between
a deterministic method and several machine learning methods de-
signed to detect patterns in symbolic real-time music. The determin-
istic method was a straight forward boundary-checking system of
pitch, amplitude, and time. We presented a single neural network-
based method, a multiple neural network-based method: using
a dedicated neural network for each pattern, a recurrent neural
network-based method, and a convolutional neural network-based
method. Of all methods presented, the deterministic method had
the best results, identifying 100% of the patterns with zero false de-
tections from a synthetically created dataset. The recurrent neural
network-based method had a very high number of true positives,
but the number of false positives also was significant.

However, some significant limitations of this studywere the fixed
window size (i.e., each pattern repetition must be identical in length
to the ground truth for successful detection) and the lack of realistic
variations in the dataset (i.e., repetitions with added notes, removed
notes, or pitch modulations). The motivation behind the present
study was to overcome these limitations of our previous work
reported in [27]. One of the most significant improvements is the
reduction of false detections encountered by neural network-based
methods. Another limitation we wish to overcome is the previous
systems’ inability to detect transposed versions of patterns. While
doing so, we wish to improve the set-up time when compared with
machine learning-based methods, as well as a lower computational
load.

3 Dataset
The reduced availability of data for evaluation is a challenge faced
by many pattern detection algorithms. This issue is exacerbated
when the data lack both musical patterns and repetitions with
expressive variations. As most existing datasets are constructed
synthetically or extracted from studio recordings, they often fail
to capture the subtleties of a live musician’s performance, which
is essential to our purpose of creating a musical instrument with
intelligent features. To bridge this gap, we created the “Dataset of

310

AM ’24, September 18–20, 2024, Milan, Italy Nishal Silva and Luca Turchet

Musical Patterns” (DoMP), a dataset of musical patterns and expres-
sive variations resulting from the contributions of 40 musicians (20
keyboard players and 20 guitar players of various musical styles
and backgrounds)2.

The dataset contains musical patterns, along with repetitions
with artistic and melodic variations in both MIDI and audio format.
The dataset was created with contributions from both keyboard
and guitar players. Each musician was asked to compose 10 distinct
monophonic musical patterns or phrases and then repeat each 9
more times. Each musician was given the artistic freedom to add
any variations or expressive techniques they prefer on each subse-
quent version so long as the original pattern remained perceptually
equivalent: the idea being that an untrained human listener should
identify each variation to be the same as the original pattern. Fig.
2 shows such an example of a pattern and a repetition with vari-
ation. Thus, the dataset contains 10 versions of each pattern: the
first being the original or the ground-truth, and the next 9 versions
being repetitions containing expressive and melodic variations. The
dataset comprises of 4000 patterns and variations, of which 2000
are played on a keyboard and 2000 are played on an electric guitar
outfitted with a MIDI tracking device.

We believe that out dataset is unique in its focus on musical
patterns with artistic variations. Each pattern is accompanied by
repetitions, some of which contain artistic variations. This reflects
the use case of a musician repeating the same pattern within a
single, or multiple performances. Moreover, the dataset was created
with live recordings from musicians, and it is specifically targeted
towards real-time pattern detection.

3.1 Patterns recorded with keyboard
All keyboard players preferred to use their own instrument for the
recordings. The keyboard players were from different musical back-
grounds, some examples being classically trained pianists, church
organists, contemporary studio/ session musicians, funk musicians,
solo performers, and keyboardists in rock and pop bands.

The keyboard players used different expressive techniques in
their playing. We noticed that some musicians prefer certain tech-
niques over others. Most keyboard players involved in live bands
used the pitch-bend controller, while its presence was very rare
among piano players and church organists. Some musicians prefer
hard keystrokes, while some prefer to play very soft. Adding pass-
ing chromatic notes in sequences, using the pitch-bend to reach
subsequent notes, and slight pitch modulations on notes are some
examples of the expressive techniques present in the dataset.

3.2 Patterns recorded with electric guitar
The recording process for the eclectic guitar segment was somewhat
restricted due to the need of a MIDI tracker3 for the electric guitar.
The MIDI tracker converts the notes played on the guitar into
symbolic representation, thereby enabling them to be used with
our algorithm (see Fig. 1).

Similarly to the keyboard players, the guitarists also belonged to
different musical backgrounds such as classically trained guitarists,
members of rock bands, blues guitarists, and jazz guitarists. Guitar

2The dataset is available at: https://doi.org/10.5281/zenodo.10818617
3https://www.fishman.com/tripleplay/

Figure 1: Electric guitar outfitted with the MIDI tracker.

(a) G 3
4 4̌

ŐŐ
ˇ ˇ
ŐŐ
4̌ ˇ

ŐŐ
ˇ

2

4ˇ
ŐŐ
ˇ ˇ

(b) G 3
4 4ˇ

ŐŐ
ˇ ˇ
ŐŐ
4ˇ ˇ

ŐŐ
ˇ

2

4 (ˇ A ˇ ˇ ˇ ˇ
Figure 2: A pattern from the dataset (a), and a version with
expressive variations by including several extra notes (b).

players used various expressive techniques that are present in the
dataset. The most common variation is deviations in time. String
bending was also a very common technique used by many guitar
players: either to reach the next note or to add slight vibrato effects.
Hammer-ons and pull-offs were also some common techniques
used.

However, several restrictions had to be applied to overcome
the limitations of the MIDI tracker. Techniques such as very fast
playing, fast legato sequences that span across multiple strings, and
fast multi-finger tapping were often tracked as single notes with
large and frequent pitch modulations. Techniques such as muted
notes, ghost notes, and harmonics (artificial/ natural/ pinch) were
tracked as false notes. Moreover, the MIDI tracker works on the
MIDI 1.0 standard, and it lacks polyphonic pitch bending, which
is a technique most guitar players use frequently, which was not a
concern for us as the dataset is monophonic. The guitarists were
asked to refrain from using techniques listed above to overcome the
hardware limitations. Despite the restrictions imposed, the dataset
contains a large number of artistic and expressive variations.

The expressive variations performed on the patterns in the
dataset range from very subtle to noticeably obvious, such that
perception of the original pattern is retained. However, these lev-
els of variation may be deemed too high for a live performance,
where performers are likely to bring about minimal variations to
a predefined pattern. As a result, we can consider our dataset as
a worst case scenario it represents the most challenging situations
that a pattern detection algorithm may encounter. These character-
istics, the inclusion of different musical instruments, along with the
involvement of diverse musicians in recording the dataset make
it an ideal candidate for evaluating our algorithms, as well as a
benchmark for future studies.

311

https://doi.org/10.5281/zenodo.10818617
https://www.fishman.com/tripleplay/

Real-Time Pattern Recognition of Symbolic Monophonic Music AM ’24, September 18–20, 2024, Milan, Italy

4 What is a Musical Pattern?
As elaborated in Section 3, recordings were obtained from many
musicians to objectively define a suitable definition for a musical
pattern. In the literature, the commonly used definition of a musical
pattern is a set of ontime pitch pairs that are repeated at least
once within a composition [1, 4]. However, most research in MIR
struggles to reach a general consensus on what is a musical pattern
[18]. Some definitions present patterns as a function of multiple
attributes (duration, contour, harmony, etc.) [16]. Some researchers
have presented drastically different definitions where patterns do
not need to be repeated but must have musical meaning to create
musical statements and to construct a musical syntax [12].

The research presented by [18] suggests that patterns can be
defined as variations on an initial musical element, where varia-
tions consist of repetitions with modifications to one or more of
its attributes (e.g., pitch, duration). A recognition system for music
must incorporate perceptual features for successful operation [25].
The work done by this research, influenced by the above defini-
tions as well as those given by various musicians will consider a
more perceptual definition of a musical pattern. We consider every
ordered sequence of notes and pauses that occur at least twice in a
composition, either identically or with variations, as a pattern. Two
sequence occurrences that present artistic variations are considered
to be repetitions of the same pattern when untrained human listen-
ers can perceptually agree on their common origin/ equivalence/
similarity.

4.1 Examples of pattern variations
To identify such variations, recordings were obtained from musi-
cians of various musical backgrounds. The dataset DoMP contains a
total of 4000 patterns of which 3600 contain artistic variations. Upon
careful inspection of DoMP, it was discovered that the recorded
repeating patterns possessed the following characteristics:

(1) The average length of a musical pattern is 20.45 notes and
pauses;

(2) The average deviation in amplitude is 9.24 MIDI velocity;
(3) The average deviation in MIDI tick time time is 77.64;
(4) The average number of notes added to a musical pattern is

4.84;
(5) The average number of notes removed from a musical pattern

is 0.69;
(6) The average number of extra pauses added to a pattern is 1.93;
(7) The average number of pauses removed from a pattern is 0.33;
(8) On average, 9% of the notes in a pattern contain pitch bends;
(9) The average number of pitch bends added as extra is 3.65;
(10) On average, 956 of the pattern variations had added pitch-

bends, when the ground-truth did not;
(11) An average of 1.58 of the added notes were chromatic passing

notes in between two notes originally one tone apart.

This understanding was preserved while designing the algo-
rithms to detect patterns in musical streams. For instance, it is
evident that approximately 24% of the notes of a pattern may be
added notes, and approximately 3% of the notes of a pattern may be
removed. An average number of 9% of the pauses in a pattern may
be added, and approximately 1% of the pauses may be removed.

The statistics above show that extra notes being added is more
common than notes being removed, and should be given a higher
priority. Similarly, while it is common for extra pauses to be added,
it is very rare for existing pauses to be removed. While the inclusion
of pitch bends to add modulations such as vibrato is very common,
using the pitch bend to reach the next note is less common. As
these traits are not localized to a single musician, but the averages
of many, this shows that they are adequate to develop an algorithm
that is generalized to work with most live performances.

5 Experimental Setup and Evaluation
In this study, we present two approaches for detecting patterns in an
incoming music stream. The first method is based on Dynamic Time
Warping (DTW) - a traditional Digital Signal Processing method
to compute the similarity between two time series. The second
method is based on a Recurrent Neural Network, a type of artificial
neural network specifically designed for sequential data.

5.1 Dynamic Time Warping
Dynamic TimeWarping (DTW) is a time-series analysis method for
temporal sequences that may vary in speed and has applications in
domains such as speech recognition and stock market analysis. The
similarity, or the distance between two sequences is computed by
constructing a distance matrix between each point and measuring
the shortest path. This property of DTW makes it an ideal candi-
date to measure similarity between musical sequences of different
lengths such as that of a musician playing a pattern with some
variation.

For two sequences 𝑥 and 𝑥 ′, which lie in the same dimensional
space with respective lengths 𝑛 and𝑚, DTW distance can be ex-
pressed as:

DTW𝑞 (𝑥, 𝑥 ′) = min
𝜋∈𝐴(𝑥,𝑥 ′)

©«
∑︁

(𝑖, 𝑗) ∈𝜋
𝑑 (𝑥𝑖 , 𝑥 ′𝑗)

𝑞ª®¬
1
𝑞

, (1)

where an alignment path 𝜋 is a sequence of 𝐾 index pairs
((𝑖0, 𝑗0), (𝑖1, 𝑗1), ..., (𝑖𝐾−1, 𝑗𝐾−1), which represents the shortest pos-
sible path between 𝑥 and 𝑥 ′, and 𝐴(𝑥, 𝑥 ′) is the set of all possible
paths.

The following criteria must be met for the alignment path 𝜋 to
be considered admissible:

• The beginning and the end of the time series’ must bematched:
𝜋0 = (0, 0), and 𝑝𝑖𝐾−1 = (𝑛 − 1,𝑚 − 1);

• The sequence should increment in both 𝑖 and 𝑗 , and all in-
dexes should be present: 𝑖𝑘−1 ≤ 𝑖𝑘 ≤ 𝑖𝑘−1 + 1, and 𝑗𝑘−1 ≤
𝑗𝑘 ≤ 𝑗𝑘−1 + 1.

For the DTW approach, we first extract a sub-sequence of notes
from the incoming music through a windowing function. The size
of the window will be dependent on the lengths of the patterns that
are to be recognized. As explained in Section 3, a musician may add
an average of 24% of additional notes and pauses. Hence, the size of
the window function was set to be approximately 20% larger than
the length of the longest pattern.

As presented in our previous works [27, 28], the MIDI data is
converted to a matrix-based representation for the DTW approach
where the pitch and duration of each note is used to represent it.

312

AM ’24, September 18–20, 2024, Milan, Italy Nishal Silva and Luca Turchet

G
ˇ = 120

ˇ ČČČ
ČČČČČˇ B ˇ ČČČČ

ČČČČˇ
[
60
60

62
60

0
60

64
60

65
60

]
65
64
62

0
0 30 60 90 120 150 180 210 240 270 300

60

Time (milliseconds)

M
ID

I n
ot

e
nu

m
be

r

Figure 3: The first four notes of the C major scale (top), and
the corresponding matrix-based representation with pitch
and duration (middle), and sampled sequence with 30ms sam-
pling frequency (bottom).

Upon receiving each MIDI event, we scan for gradient changes
in pitch in order to determine changes between notes and pauses.
Whenever a gradient change is detected i.e., the transition between
a note on message and a note off message, or receiving a pitch
bend message, we consider it as a new event. Fig 3 shows the first
four notes of a C-major scale with a pause, and its matrix based
representation.

The pitch is an integer in the range 0–127. However, pitch bends
are denoted using a separate pitchwheel message which lies in the
range 0–16383 [2]. Although this range of values could be mapped
to a pitch change of any interval in a synthesizer, the common
practice is to use a pitch bend of ±2 semitones [2]. We work under
this assumption and denote the pitch of a note as a floating point
value where a unit pitchwheel increment is considered as a 1/8192
increment in pitch. As this system is mainly developed with live
improvisational usage in mind, we use the default MIDI tempo of
120 BPM.

A sub-sequence is obtained upon receiving each new event - may
it be a note, pause, or a pitch-bend. The DTW between each ground-
truth and the sub-sequence is then computed to measure similarity.
The MIDI notes are converted to the matrix-based representation
format consisting of a pitch vector and a duration vector (ref fig.
3), which requires the use of a multidimensional DTW to obtain a
similarity.

This multidimensional DTW may be achieved by a singular
warping path across all dimensions, or by merged warping paths
of each individual dimension [26, 35]. We have chosen the latter, as
it enables us to control the contribution of each attribute towards
the final similarity measure. This step is crucial in our application,
as we have identified that some attributes are more important to
the definition of a pattern than others (refer to Sections 3 and 4).
As evident by the dataset recorded by real musicians, and as stated
in the generally accepted definition of a pattern [1, 4], the pitches
of notes are a critical factor and should be given more importance.
While the duration of notes do play a part in defining a pattern, the
data we collected suggest that it could be given a lesser importance.

G ˇ ? (ˇ ˇ ˇ

G ˇ <̀ (ˇ ˇ ˇ
Figure 4: C, D, E, F notes with a short pause (top). The same
notes, but with a significantly larger pause (bottom). Due to
the longer pause, the two patterns will not seem perceptually
equivalent despite the pitches being identical.

Ground Truth

variation 1

sp

sd

ppi

pdi

DTWp

DTWd

wp

wd

variation 2

variation 9

DTW

Figure 5: A block diagram of the DTW algorithm.

Refer to Fig. 4 for an example of this scenario, where significant
changes in some less-important attributes may alter the perceptual
definition.

Hence, we have implemented a weighted sum to obtain the final
metric. The algorithm splits the sequence to a pitch vector 𝑠𝑝 and a
duration vector 𝑠𝑑 . As shown in Fig. 5, a 1-dimensional DTW for
pitch and duration (𝐷𝑇𝑊𝑝 and 𝐷𝑇𝑊𝑑) is obtained between each
pitch and duration vector in the sequence (𝑠𝑝 and 𝑑𝑑), and the
corresponding pitch and duration vectors of a pattern 𝑖 in a list of
patterns (𝑝𝑝𝑖 and 𝑝𝑑𝑖), to obtain 𝐷𝑇𝑊𝑝 and 𝐷𝑇𝑊𝑑 . The final metric
is obtained via a weighted summation of 𝐷𝑇𝑊𝑝 and 𝐷𝑇𝑊𝑑 , where
𝑤𝑝 and𝑤𝑑 are the weights for pitch and duration respectively. The
weights were empirically identified to obtain the highest accuracy.

The DTW method was evaluated to measure its accuracy when
computing similarity for increasing numbers of patterns. For each
musician, the dataset contains 10 ground truths, as well as 90 varia-
tions. 10 rounds of experiments were conducted for each musician
where the first evaluation had a single pattern, the second had two
patterns, and so on. For each pattern 𝑖 , the final metric was obtained
as: 𝐷𝑇𝑊 = 𝐷𝑇𝑊𝑝 ×𝑤𝑝 + 𝐷𝑇𝑊𝑑 ×𝑤𝑑 .

5.2 Recurrent Neural Network (RNN)
A Recurrent Neural Network (RNN) is a subclass of artificial neural
networks where nodes are interconnected, allowing the output
of nodes to have an impact on subsequent nodes. Due to their
capabilities of working with synchronous and temporal data, RNNs
have many applications such as language translation, time series
prediction and analysis, and well as speech synthesis.

The RNN should be able to detect if a sequence of musical notes
and pauses is similar to one of the pre-defined patterns and produce
a statistical estimate of the similarity. To achieve this, we use an
RNN classification, where the number of output classes is equal to

313

Real-Time Pattern Recognition of Symbolic Monophonic Music AM ’24, September 18–20, 2024, Milan, Italy

the number of patterns, along with an additional class to denote
not-a-pattern.

Several different RNN configurations exist, each with their own
merits and drawbacks. For our approach, we empirically identified
that a stacked configuration, consisting of a fully connected RNN
layer, a GRU layer, and a LSTM layer yielded the best accuracy.

A Fully Connected RNN consists of an architecture where each
node is connected to every node in the next layer. This compre-
hensive connectivity allows information to flow between all nodes.
Fully connected RNNs can capture intricate relationships present
in sequential data more effectively than simpler architectures such
as Vanilla RNNs. However, due to their complex structure, fully
connected RNNs may require more training data and computational
resources.

The long-short term memory (LSTM) networks involve a more
complex memory which allows it to retain information over long
sequences. LSTMs consist of a hidden state and a cell state, which
contain the input at the current time step along with the informa-
tion learned from previous time steps. The LSTM has three gates as
illustrated by fig 6. The input gate regulates the flow of new infor-
mation into the cell state, the forget gate controls the information to
be discarded, and the output gate controls the flow of information
from the cell state to the hidden state. This architecture allows the
LSTM layer to capture long-term dependencies in sequential data

The gated recurrent unit (GRU) layer is also able to overcome the
vanishing gradient through its update gate and reset gate, which de-
termines the degree of past information forwarded to the future and
the amount of past information to discard respectively. The GRU
also includes a candidate hidden state as well as a final hidden state,
which allows it to selectively update its hidden state at each time
step, making it well-suited for tasks with sequential information.

The RNNmethod uses a discrete time series representation of the
input data. This is achieved by sampling the MIDI input every 30
milliseconds to obtain a sub-sequence with equal temporal spacing
between elements. We used intervals of 30 ms as this is approxi-
mately the temporal resolution of the human hearing system to
distinguish two sequential sound events [21]. Similar to the DTW
method, the pitch is denoted as a floating point value where a unit
increase in MIDI pitchwheel corresponds to 1/8192 increment in pitch.
Fig. 3 shows an example for this time-series representation, where
the first four notes of the C major scale in standard musical format
and the sampled time series.
Creation of the synthetic training dataset

A primary requirement for any accurate deep learning model is
the availability of sufficient training data that correspond to possible
variations and fluctuations of the input. In an approach such as
ours, the training set must adequately represent all variations that
musicians may perform as described in section 4. It is impractical
for a musician to record numerous versions of each single pattern.
Hence we analyzed the pattern variations present in the dataset
to identify the most commonly applied variations, and apply them
to create a synthetic training dataset of expressive and melodic
variations given a single ground-truth.

These variations are inspired by those present in the recorded
dataset. Upon extensive analysis of the dataset, we identified several
expressive variations that were common across most musicians.
Some examples for said variations are:

• Changing the duration of notes and pauses;
• Doubling one, or a number of notes;
• Adding pitch modulations on one, or several notes;
• Using the pitch-bend controller or bending the string to
reach a subsequent note;

• Adding chromatic passing notes between notes;
• Removing notes and/or pauses;
• Addition of extra notes and/or pauses;
• Alternating between staccato and legato style playing;
• Changing octaves and/ or transpositions.

Such common expressive variations are used as rules when cre-
ating the synthetic dataset. Some examples of the applied rules
are:

• Changing the duration of arbitrary notes and pauses by a
constant factor, so as the total duration of themelody remains
unchanged.

• Doubling notes: It was identified that approximately 23.6%
notes may be added as extra. An arbitrary number of notes
between 0 and 23.6% are doubled, while halving their dura-
tion.

• Removal of notes: It was identified that approximately 3.3%
notes may be removed. An arbitrary number of notes be-
tween 0 and 3.3% are removed. The durations are left un-
changed, and the removed duration is added to other arbi-
trary notes/pauses.

• Pitch bends: For an arbitrary number of notes between 0 and
9%, where each note and the subsequent note are less than 2
semitones apart, a pitch bend is applied to the first note to
gracefully reach the pitch of the subsequent note, which is
removed and its duration added to the first note.

• Chromatic notes: If a note and the subsequent note are ex-
actly 2 semitones apart, adding the middle note.

There have been studies that apply rule-based modulation to
mimic certain styles of music, where the rules may be strict [3].
However, our approach tries to generalize expressive variations
that has the potential to work with most musicians’ playing styles.
Longer musical patterns have the potential for more expressive
variation, and vice versa. It was empirically identified that approxi-
mately 10000 such variations per ground-truth were sufficient.

During training a neural network, it is crucial to have all training
data in an equal size. As the synthesized dataset contains different
sized variations, we pad the training dataset to fit the length of the
longest variation present.

As the task is a relatively simple time series classification, and as
the model needs to be light enough to run on an embedded system
in real time, the RNN layer consists of 64 neurons, the GRU layer
consists of 32 neurons, and the LSTM layer consists of 64 neurons.
Furthermore, we use amasking layer to disregard any padded inputs
in the training dataset. The training dataset is also sampled at 30
ms increments to maintain consistency between training data and
actual input.

The evaluation of the RNN was kept as close as possible to the
evaluation of the DTW to maintain a fair comparison. 10 groups of
musical patterns, each with 1 to 10 patterns were used. For each
case, the RNN was trained with synthetically created variations
as discussed, and evaluated against the actual pattern variations

314

AM ’24, September 18–20, 2024, Milan, Italy Nishal Silva and Luca Turchet

+

α α α
×

×

ct-1
ft it ct ot

ct

ht
α α

×
×
1-

+
htztht

×

tanh

xt

ot

ht
ht-1

ht-1

xt

ht

ht-1 xt

ht

tanh tanh

tanh

Figure 6: A traditional RNN layer (left); a GRU layer (middle) with a reset gate 𝑟𝑡 and an update gate 𝑧𝑡 ; and a LSTM layer (right)
with a forget gate 𝑓𝑡 , input gate 𝑖𝑡 , and output gate 𝑜𝑡 . At each timestep 𝑡 : 𝑥𝑡 , 𝑜𝑡 , ℎ𝑡 , and 𝑐𝑡 are the input, output, hidden state,
and intermediate cell state, 𝛼 and 𝑡𝑎𝑛ℎ are the sigmoid and tanh activation functions respectively.

Ground Truth

Variation 1

Variation 2

Variation 9

Synthetically created training
dataset

RNN

Figure 7: A Block diagram of evaluation of the RNN algo-
rithm.

1 2 3 4 5 6 7 8 9 10

1.0

0.8

0.6

0.4

0.2

 0

A
ve

ra
ge

 d
et

ec
tio

n
ac

cu
ra

cy

DTW
RNN

Number of distinct patterns

Figure 8: Average detection accuracy against number of pat-
terns.

recorded by the musician. Fig. 7 shows a block diagram of the
evaluation.

6 Results
The evaluations were conducted in a way that would warrant a
fair comparison between DTW and RNN. Patterns were grouped
together to assess the detection accuracy when multiple patterns
are present. RNN and DTW systems were evaluated on their ability
in detecting a single pattern up to detecting 10 distinct patterns.

The MIDI pitch and duration of each musical note was used to
represent it for computations. The DTW method uses the MIDI
data represented through a matrix-based format, and the RNN uses
a discrete time-series obtained by sampling the MIDI data. Fig. 8
shows the average accuracies of the DTW as compared to the RNN
method for groups of patterns ranging from 1-10.

Upon conducting evaluations where the music was represented
by pitch, velocity, and duration [27, 28], a significant reduction of

0 10 20 30 40 50 60

120

100

 80

 60

 40

 20

 0

Pattern notes and pauses

M
ID

I v
el

oc
ity

version 6
version 7
version 8
version 9
version 10

version 1
version 2
version 3
version 4
version 5

Figure 9: MIDI velocity values for 9 versions of a pattern
in the dataset. The plot indicates the velocity value of each
note in the pattern, and 0 velocity represents the pauses.
The plot shows that velocity is an unreliable factor given its
inconsistency and high variance.

detection accuracy was observed as illustrated in Fig 9. Upon in-
vestigation of the dataset, we noticed that changes in velocity were
very common among pattern repetitions (refer fig. 11). As there is
a high variance in velocity, even among repetitions of the same pat-
terns, including it in computation will merely inhibit the systems
accuracy. Hence we discarded velocity from our evaluations.

Fig. 10 shows the DTW results for 4 ground truths and their
variations individually. Each subplot represents a single ground
truth along with the dtw distances against the ground truth for
its recorded variations. The first index of the x-axis is the ground
truth, thereby resulting in a DTW distance of zero with itself. The
grouping of musical patterns was done to simulate a hypothetical
real-world case, where a musician would select several iconic musi-
cal phrases that they would include in their performance in order
to control peripheral devices in real-time.

As our algorithms are designed to work in real time, a low latency
is a primary requirement. Latency values for the RNNmethod when
classifying 1 - 10 patterns a is shown by table 1. These latency values
show the system’s suitability to work in real time.

All evaluations were done with Python using the Keras API for
TensorFlow. The training was done on a computer with an Intel(R)
Core(TM) i9-10940X CPU @ 3.30GHz using NVIDIA GeForce RTX
4090 and NVIDIA GeForce RTX 3090 GPUs. The evaluation of the

315

Real-Time Pattern Recognition of Symbolic Monophonic Music AM ’24, September 18–20, 2024, Milan, Italy

1.0

0.8

0.6

0.4

0.2

 0
0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

 0
0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

 0
0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

 0
0 2 4 6 8 10

Figure 10: dtw distances for pattern variations. X-axis repre-
sents each variation, while the y-axis represents the DTW
value for said variation.

Number of distinct patterns
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 d
et

ec
tio

n
ac

cu
ra

cy

1.0

0.8

0.6

0.4

0.2

 0

DTW
RNN

Figure 11: Average detection accuracy against number of
patterns when using pitch, velocity, and amplitude.

algorithms was done on a Laptop with an Intel(R) Core(TM) i7-
11800H @ 2.30GHz. However, we have implemented them within
an embedded system for real-time inference.

7 Discussion and Conclusion
In this paper, we presented a comparison between Dynamic Time
Warping and Recurrent Neural network based methods for musical
pattern detection in real-time. The experimental results show that
the RNN performs better across the board, especially when increas-
ing the number of distinct patterns to recognize. This accuracy may
be attributed to the RNN’s ability to process sequential data, and
its ability to capture long-term dependencies in time series data,
learn complex, non-linear relationships between input and output
variables, as well as their ability to handle inputs of different lengths
- which is a major characteristic required for pattern detection tasks
such as ours.

The adequacy of the training dataset may also be attributed to
the high accuracy of the RNN. The synthetically created pattern
variations, inspired by those present in the dataset, act as good
representations of real inputs as evident by the results. With this
synthetically created training dataset, we overcome a main draw-
back in any neural network-based method - the requirement of
sufficient data for training.

However, a drawback in the RNN method is the high computa-
tional power required for training. For our evaluations, the training
was done on a high performing remote server. The inference, on the
other hand requires minimal power. Our evaluations, which were
done on a standard laptop computer revealed that the memory and

CPU consumption during inference in minimal, and it can be done
on an embedded computing device.

Our contributions by this study are: an RNN based algorithm to
detect musical patterns in real-time; a novel dataset of musical pat-
terns and expressive and melodic variations, and a model to create
a synthetic training dataset to train the RNN model. While the eval-
uation of the RNN-based method produced good results, there is
ample room for improvement. In future work we plan to extend this
study to work with polyphony - where a musician may utilize pat-
terns with multiple notes at a given time instant. The extension to
work with polyphony will also allow for multi-instrument patterns
to be defined. All these features could be exploited by composers
and performers to explore novel artistic forms, which are enabled
by the smart musical instruments and the IoMusT paradigm.

Furthermore, the algorithm presented by this paper resulted in
the development of a prototype smart electric guitar4, with mono-
phonic pattern detection capabilities. The prototype smart electric
guitar demonstrates RNN’s ability to detect patterns in real-time, us-
ing minimal computational resources. The RNN algorithm has been
implemented within an embedded computing system, mounted
on the electric guitar body. Furthermore, it has the capability to
control peripheral devices wirelessly. We plan to further develop
this musical instrument to work with polyphony, as well as audio
signals instead of MIDI. Our hope is that developments such as this
in the field of IoMusT will spur the creativity of musicians in incor-
porating multisensory components (e.g., visual, tactile, olfactory)
into their musical performances.

References
[1] 2018. 2017:Discovery of Repeated Themes & Sections. Retrieved Aug 12,

2024 from https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_
Themes_%26_Sections

[2] 2024. Official MIDI Specifications: General MIDI 1. Retrieved Aug 12, 2024 from
https://midi.org/general-midi

[3] M. Amerotti, S. Benford, B. Sturm, , and C. Vear. 2023. A Live Performance
Rule System Informed by Irish Traditional Dance Music. In Proceedings of the
International Symposium on Computer Music Multidisciplinary Research.

[4] A. Arronte Alvarez and F. Gómez. 2021. Motivic Pattern Classification of Music
Audio Signals Combining Residual and LSTM Networks. International Journal of
Interactive Multimedia and Artificial Intelligence (05 2021).

[5] S. Chakrabarty, R. Islam, E. Pricop, and H. Sarma. 2022. An Approach to Discover
Similar Musical Patterns. IEEE Access 10 (2022), 47322–47339.

[6] T. P. Chen and L. Su. 2017. Discovery of repeated themes and sections with patern
clustering. In Presented at the 18th International Society for Music Information
Retrieval Conference.

[7] T. Collins, J. Thurlow, R. Laney, A. Willis, and P. Garthwaite. 2010. A comparative
evaluation of algorithms for discovering translational patterns in Baroque key-
board works. In Proceedings of the International Symposium on Music Information
Retrieval.

[8] D. Conklin and C. Anagnostopoulou. 2001. Representation and Discovery of
Multiple Viewpoint Patterns. In Proceedings of the 2001 International Computer
Music Conference. 479–485.

[9] R. Dannenberg and N. Hu. 2002. Linear time for discovering non-trivial repeat-
ing patterns in music databases. In ISMIR 2002 Conference Proceedings: Third
International Conference on Music Information Retrieval. 63–70.

[10] T. de Reuse and I. Fujinaga. 2019. Pattern Clustering in Monophonic Music by
Learning a Non-Linear Embedding From Human Annotations. In Proceedings of
the 20th International Society for Music Information Retrieval Conference. 761–768.

[11] C. Finkensiep, M. Neuwirth, and M. Rohrmeier. 2018. Generalized Skipgrams for
Pattern Discovery in Polyphonic Streams. In Proceedings of the 19th International
Society for Music Information Retrieval Conference. 23–27.

[12] F Gómez, M Tizón, A Arronte Alvarez, and V Padilla. 2022. Rhetorical Pattern
Finding. International Journal of Interactive Multimedia and Artificial Intelligence
(11 2022).

4https://hotlicksvst.github.io/

316

https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections
https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections
https://midi.org/general-midi
https://hotlicksvst.github.io/

AM ’24, September 18–20, 2024, Milan, Italy Nishal Silva and Luca Turchet

Table 1: RNN average latency values for inference.

Number of patterns 1 2 3 4 5 6 7 8 9 10
Latency (milliseconds) 4.78 4.87 4.75 4.67 4.97 5.15 4.83 4.69 4.74 4.77

[13] J. L. Hsu, C. Liu, and A. Chen. 2001. Discovering nontrivial repeating patterns in
music data. IEEE Trans. Multim. 3 (2001), 311–325.

[14] I. Knopke and F. Jürgensen. 2009. A System for Identifying Common Melodic
Phrases in the Masses of Palestrina. Journal of New Music Research 38, 2 (2009),
171–181.

[15] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley. 2020. PANNs:
Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020),
2880–2894.

[16] O. Lartillot and P. Toiviainen. 2007. Motivic matching strategies for automated
pattern extraction. Musicae Scientiae 11, 1_suppl (2007), 281–314.

[17] C. Meek. 2003. Automatic Thematic Extractor. Journal of Intelligent Information
Systems 21 (2003), 9–33.

[18] O. Melkonian, I. Ren, W. Swierstra, and A. Volk. 2019. What Constitutes a
Musical Pattern?. In Proceedings of the 7th ACM SIGPLAN International Workshop
on Functional Art, Music, Modeling, and Design (Berlin, Germany). Association
for Computing Machinery, New York, NY, USA, 95–105.

[19] D. Meredith. 2017. Using SIATECCOMPRESS to discover repeated themes and
sections in polyphonic music. In Presented at the 18th International Society for
Music Information Retrieval Conference.

[20] D. Meredith, K. Lemström, and G. A. Wiggins. 2002. Algorithms for discovering
repeated patterns in multidimensional representations of polyphonic music.
Journal of New Music Research 31, 4 (2002), 321–345.

[21] B. C. J. Moore. 2012. An introduction to the psychology of hearing. Brill.
[22] O. Nieto and M. M. Farbood. 2017. Music segmentation techniques and greedy

path finder algorithm to discover musical patterns. In Presented at the 18th Inter-
national Society for Music Information Retrieval Conference.

[23] M. Pesek, A. Leonardis, and M. Marolt. 2017. SYMCHMMERGE: an extension
to the compositional hierarchial model for pattern discovery in symbolic music
representations. In Presented at the 18th International Society for Music Information
Retrieval Conference.

[24] I. Y. Ren, H. V. Koops, A. Volk, and W. Swierstra. 2017. In Search of the Con-
sensus Among Musical Pattern Discovery Algorithms. In Proceedings of the 18th

International Society for Music Information Retrieval Conference. 23,27.
[25] I. Shmulevich, O. Yli-Harja, E. Coyle, D. Povel, and K. Lemström. 2001. Perceptual

Issues in Music Pattern Recognition: Complexity of Rhythm and Key Finding.
Computers and the Humanities 35, 1 (2001), 23–35.

[26] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh. 2017. Generalizing DTW
to the multi-dimensional case requires an adaptive approach. Data Mining and
Knowledge Discovery 31 (01 2017). https://doi.org/10.1007/s10618-016-0455-0

[27] N. Silva, C. Fischione, and L. Turchet. 2020. Towards Real-Time Detection of
Symbolic Musical Patterns: Probabilistic vs. Deterministic Methods. In 2020 27th
Conference of Open Innovations Association (FRUCT). 238–246.

[28] N. Silva and L. Turchet. 2022. A Structural Similarity Index bsed method to
detect symbolic monophonic patterns in real-time. In Proceedings of the 25th
International Conference on Digital Audio Effects. 161–168.

[29] M. Thomas, Y. V. S. Murthy, and S. G. Koolagudi. 2016. Detection of largest
possible repeated patterns in Indian audio songs using spectral features. In 2016
IEEE Canadian Conference on Electrical and Computer Engineering. 1–5.

[30] L. Turchet. 2019. Smart Musical Instruments: vision, design principles, and future
directions. IEEE Access 7 (2019), 8944–8963.

[31] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet. 2018. Internet of
Musical Things: Vision and Challenges. IEEE Access 6 (2018), 61994–62017.

[32] P. van Kranenburg, A. Volk, and F. Wiering. 2013. A Comparison between
Global and Local Features for Computational Classification of Folk SongMelodies.
Journal of New Music Research 42, 1 (2013), 1–18.

[33] A. Volk and P. van Kranenburg. 2012. Melodic similarity among folk songs: An
annotation study on similarity-based categorization in music. Musicae Scientiae
16, 3 (2012), 317–339. https://doi.org/10.1177/1029864912448329

[34] C. I. Wang, J. Hsu, and S. Dubnov. 2015. Music Pattern Discovery with Variable
Markov Oracle: A Unified Approach to Symbolic and Audio Representations.
In Proceedings of the 16th International Society for Music Information Retrieval
Conference.

[35] M. Wöllmer, M. Al-Hames, F. Eyben, B. Schuller, and G. Rigoll. 2009. A multidi-
mensional dynamic time warping algorithm for efficient multimodal fusion of
asynchronous data streams. Neurocomputing 73, 1 (2009), 366–380.

317

https://doi.org/10.1007/s10618-016-0455-0
https://doi.org/10.1177/1029864912448329

	Abstract
	1 INTRODUCTION
	2 Related Works
	3 Dataset
	3.1 Patterns recorded with keyboard
	3.2 Patterns recorded with electric guitar

	4 What is a Musical Pattern?
	4.1 Examples of pattern variations

	5 Experimental Setup and Evaluation
	5.1 Dynamic Time Warping
	5.2 Recurrent Neural Network (RNN)

	6 Results
	7 Discussion and Conclusion
	References

