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Brain–computer interfaces (BCIs) establish communication between a human brain and a
computer or external devices by translating the electroencephalography (EEG) signal into
computer commands. After stimulating a sensory organ, a positive deflection of the EEG
signal between 250 and 700ms can be measured. This signal component of the event-
related potential (ERP) is called “P300.”Numerous studies have provided evidence that the
P300 amplitude and latency are linked to sensory perception, engagement, and cognition.
Combining the advances in technology, classification methods, and signal processing, we
developed a novel image ranking system called the Unicorn Blondy Check. In this study,
the application was tested on 21 subjects using three different visual oddball paradigms.
Two consisted of female faces and gray-scale images, while the third test paradigm
consisted of familiar and unfamiliar faces. The images were displayed for a duration of
150 ms in a randomized order. The system was trained using 50 trials and tested with 30
trials. The EEG data were acquired using the Unicorn Hybrid Black eight-channel BCI
system. These synchronized recordings were analyzed, and the achieved classification
accuracies were calculated. The EEG signal was averaged over all participants and for
every paradigm separately. Analysis of the EEG data revealed a significant shift in the P300
latency dependent on the paradigm and decreased amplitude for a lower target to non-
target ratio. The image ranking application achieved a mean accuracy of 100 and 95.5%
for ranking female faces above gray-scale images with ratios of 1:11 and 5:11,
respectively. In the case of four familiar faces to 24 unfamiliar faces, 86.4% was
reached. The obtained results illustrate this novel system’s functionality due to
accuracies above chance levels for all subjects.
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1 INTRODUCTION

Brain–computer interfaces (BCIs) establish communication between a human brain and a computer
or external devices. The BCI translates information of electrophysiological signals measured from the
scalp via electroencephalography (EEG) or directly from the cortex using electrocorticography into
computer commands (Wolpaw et al., 2002). EEG-based BCIs provide an inexpensive,
straightforward, and noninvasive method for studying neural activities. Therefore, they are
widely used in research environments and commercial applications. Principles on which BCIs
rely are motor-imagery, slow waves, steady-state visual evoked potentials (VEPs), and evoked
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potentials (Schomer and Silva, 2010; Nicolas-Alonso and Gomez-
Gil, 2012). Pfurtscheller (2001) was one of the first to show a
correlation between the EEG signal and imagining body
movement called event-related synchronization and
desynchronization.

In recent years, there has been growing interest in studying
cognitive neuroscience with the help of EEG-based BCIs. A
robust methodology to study cognitive processing is event-
related potentials (ERPs) (Woodman, 2010). When exposed to
specific events or stimuli, brain structures generate these ERPs.
The type of evoked potential depends on the presented stimulus.
Whether auditory, olfactory, or visual evoked potentials, they all
result in the corresponding ERP (Sato et al., 1996). VEPs, a
subcategory of ERPs, find widespread use in BCIs, where they
enable information exchange without physical inputs (Nicolas-
Alonso and Gomez-Gil, 2012; Zhang et al., 2012). While visual
stimuli are mainly used, auditory and tactile stimuli have also
been useful in BCI applications (Gao et al., 2014; Lugo et al.,
2014).

Specific components within the ERP, called cognitive negative
variation and P300, were first discovered by Walter et al. (1964).
P300, in this context, represents the positive deflection of the
ERPs amplitude about 250–700 ms after a novel stimulus
compared to the previous stimuli is presented (Donchin and
Smith, 1970; Rugg and Coles, 1995). Numerous studies have
provided evidence that P300 is linked to sensory perception,
engagement, and cognition (Woodman, 2010; Chen et al., 2020).
These discoveries have made P300 an essential parameter in
neuroscience. Aiming to leverage the P300 component, the
standard paradigm used in P300-based BCIs is the “oddball”
paradigm (Luck, 2014). The paradigm relies on the fact that an
unexpected stimulus triggers a higher P300 amplitude than a
reference stimulus. On the other hand, results from several
studies have suggested that unexpected or rare stimuli always
produce a P300 (Groppe et al., 2011), (Chen et al., 2020). Also, it
has been observed that a lower probability of a target stimulus
results in a higher P300 amplitude (Polich et al., 1996), (Duncan-
Johnson and Donchin, 1977).

Farwell and Donchin (1988) proposed the first P300-based
BCI. A six-by-six matrix composed of letters representing
different commands was presented to the subjects. Then the
columns and rows of the matrix were flashed rapidly in a random
order, and the subjects were asked to focus on the desired letter
and count the number of flashes. Only flashes of rows and
columns containing the desired letter evoke P300 potentials.
Commonly used in BCI research for this kind of application is
the term P300-speller. Besides the row/column speller mentioned
above, single-character spellers have also been investigated. The
basic idea with single-character spellers is that a lower probability
of the target occurring triggers a higher P300 response. However,
no higher P300 amplitude or more reliable control of single-
character spellers compared to spellers could be confirmed in
prior studies (Guger et al., 2009).

Several feature extraction and classification procedures have
been investigated to enhance the performance of P300-based
BCIs (Krusienski et al., 2008). Methods such as linear
discriminant analysis (Guger et al., 2009), stepwise linear

discriminant analysis (Sellers and Donchin, 2006), support
vector machines (Thulasidas et al., 2006), and matched
filtering (Serby et al., 2005) have been utilized in P300-based
BCIs. The field is maturing with the adoption of new machine
learning algorithms that reduce the amount of training data
required to achieve sufficient classification accuracy, such as
the time-variant Linear discriminant analysis proposed by
Gruenwald et al. (2019). Complementing these advances,
researchers have also focused on improving P300-based BCIs’
slow communication rates (Martens et al., 2009; Takano et al.,
2009; Mugler et al., 2010).

Relevant to the application of P300-based BCIs in the
nonclinical area are studies that hint at the P300 latency and
shape change due to the cognitive processes associated with the
stimulus processing. Specifically, it is suggested that the latency is
related to the time it takes the person to process the oddball
stimulus and that the P300 component of the ERP might be
linked to sensory perception, engagement, and cognition
(McCarthy and Donchin, 1981; Magliero et al., 1984; Rugg
and Coles, 1996; Comerchero and Polich, 1999; Polich, 2007).
Although a large body of research exists, suggesting the P300
shape, amplitude, and latency correlate with the underlying
stimuli, only a few applications have adopted this groundwork
for commercial and clinical use. Mainly spelling systems such as
the intendiX system (Guger et al., 2016) or the mindBEAGLE BCI
for patients with disorders of consciousness (Guger et al., 2017)
are currently available.

Leveraging the previously mentioned research and advances,
g.tec neurotechnology GmbH has developed the Unicorn Blondy
Check. This application is presented in this study and aims to
advance neuromarketing and enable new VEP research findings.
Based on synchronizing the EEG samples with the image
presentation, the system uses the P300 response to assign a
score value to the displayed images and ranks the images
according to that score value.

This study aims to present and validate a working EEG-based
image ranking software. For this purpose, we investigated
whether features extracted from a live EEG recording can be
used to select and rank images with an accuracy above chance
level. Subsequently, the application can be applied as a ranking
system to reduce the time for sorting/labeling/selecting numerous
images and for further research on the connection between the
EEG and cognition.

2 MATERIALS AND METHODS

2.1 Apparatus
The EEG signal was recorded using the Unicorn Hybrid Black
system (g.tec neurotechnology GmbH, 2020; Accessed: 2021-27-
01). The biosignal amplifier was connected to a personal
computer using the integrated Bluetooth interface. The
apparatus provides a 24-Bit conversion with a sampling rate of
250 Hz. Eight channels are recorded on the following positions:
{Fz,C3,Cz,C4, Pz, PO7,Oz, PO8}
� {CH1,CH2,CH3,CH4,CH5,CH6,CH7,CH8}. The channel
positions are visualized in Figure 1. Ground and reference are
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placed on the mastoids of the subject using the disposable sticker-
based surface electrodes. The data are recorded and stored using
the Unicorn Blondy Check application (g.tec neurotechnology
GmbH, 2021; Accessed: 2021-27-01).

2.2 Paradigm Design
For the image ranking experiment, different random patterns of
images need to be generated to train and test the image ranking
system. These patterns are referred to as paradigms P1, P2, P3,
and P4. They are essentially oddball paradigms. To create these
paradigms, the application’s paradigm editor is used. The oddball
in P1 and P2 is a colored picture of a female face compared to
gray-scale images, while the oddball in P3 and P4 is a familiar face
compared to unfamiliar faces. P1 has one target and 11 non-
targets, P2 has four targets and 11 non-targets, P3 has four targets
and 24 non-targets, and P4 has one target and 11 non-targets. The
four different paradigms are summarized in Table 1, while the
images used for each paradigm are depicted in Figure 2. The
pictures of the familiar faces are unique for each subject. Thus
they are replaced by placeholders-icons in Figures 2C,D. The
ratio of 1:11 for target to non-target stimuli for the system’s
calibration was chosen in accordance with P300-based speller
systems (Guger et al., 2009). To test the system, paradigms with 1:
11 as well as lower ratios of 4:11 and 4:24 were generated. These
lower ratios were chosen to investigate if the decreases in

P300-amplitude due to lower ratios as suggested by Duncan-
Johnson and Donchin (1977) could lead to a decrease in Ranking
performance. Regarding the choice of images, faces were chosen
because recent work has shown that faces can improve P300 BCI
performance (Guger et al., 2016).

2.3 Participants and Procedure
Twenty-one subjects (9 males, 12 females), aged between 22 and
78 (mean age � 35, standard deviation � 14), took part in the
study. All participants provided informed consent and were
recruited through word-of-mouth. The study was approved by
the responsible ethical committee (Ethikkommission des Landes
Oberösterreich; Number D-35-16). The tests were conducted in
multiple locations, mainly the home of the participants or g.tec
company grounds. Special care was taken that the environment
was as quiet as possible to keep the distraction to a minimum.

Participants were asked to sit in front of the computer screen.
The system was placed on the subject’s head. Then, the EEG-cap
was connected to the application via Bluetooth. The signal-
quality was checked using the built-in signal quality feature.
The contact impedance (electrode-scalp) was lowered by
injecting electrode gel to improve the signal quality. The gel
was applied to each of the eight electrodes of the EEG-cap. After
this step, the signal quality evaluated by the system was within
limits set by the system. The steps described above were done for

FIGURE 1 | (A) Unicorn Hybrid Black system, (B) the electrode positions of the system. Ground and reference are fixed on the mastoids using disposable sticker-
based surface electrodes and not visible in the graphic.

TABLE 1 | Composition of the four different paradigms used for the image ranking experiment.

Paradigm name Target count Non-target count Target image Non-target image

P1 1 11 Female face Gray-scale
P2 5 11 Female face Gray-scale
P3 4 24 Familiar face Unfamiliar face
P4 1 11 Familiar face Unfamiliar face
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every subject. Finally, the different test paradigms (Figure 2)
were loaded. The EEG was recorded throughout the entire
measurement. After completing the training, the test

paradigms were loaded. The measurement procedure can be
segmented into two parts, with each having training and a test
phase, as described below.

2.3.1 Part One
During the first part of the measurement, the system was trained
using P1 (one female face and 11 gray-scale images) as a training
paradigm (Figure 2). The training consisted of 50 trials resulting
in 50 target stimuli and 550 non-target stimuli, which amounted
to a training time of 90 s. After completing the training, the
system was tested using the paradigms P1, P2, and P3. Each test
consisted of 10 trials and was performed three times resulting in
30 test trials for each paradigm. The measuring sequence of part
one can be seen in Table 2.

2.3.2 Part Two
During the second part of the measurement, P4 (one familiar
face, 11 unfamiliar faces) was loaded for the training paradigm
(see Figure 2). Analogous to part one, the training consisted
of 50 trials resulting in 50 target and 550 non-target
stimuli, which amounted to a training time of 90 s. The
trained system was tested using the paradigms P1, P2, and
P3 analogously to part one. Each test consisted of 10 trials and

FIGURE 2 | Image sets used for the oddball paradigms: (A) Paradigm 1 “P1″ containing one female face (target class) and 11 gray-scale images (non-target class),
(B) Paradigm 2 “P2″ containing five female faces (target class) and 11 gray-scale images (non-target class), (C) Paradigm 4 “P4″ containing one familiar face (target
class) and 11 unfamiliar faces (non-target class), (D) Paradigm 3 “P3″ containing four familiar faces (target class) and 24 unfamiliar faces (non-target class). The pictures
of the familiar faces are different for each subject. Thus they are replaced by placeholders-icons in (C) and (D).

TABLE 2 |Measurement structure. In part one, the application was trained on the
VEP produced by a female face and gray-scale images (P1). In part two,
familiar faces and unfamiliar faces (P4) were used for training. P1, P2, and P3 were
used for testing. Each image was displayed 150 ms, with the next immediately
following the previous. The training paradigm was presented 50 times, and
each test paradigm 30 times.

Mode Paradigm Trials Presentation
Time (ms)

Number of
Images

Duration [s]

Measurement part one

Training P1 50 150 12 90
Test 1 P1 30 150 12 54
Test 2 P2 30 150 16 72
Test 3 P3 30 150 28 126

Measurement part two

Training P4 50 150 12 90
Test 1 P1 30 150 12 54
Test 2 P2 30 150 16 72
Test 3 P3 30 150 28 126
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was performed three times resulting in 30 test trials for each
paradigm. The measuring sequence of part two can be seen in
Table 2.

2.3.3 Stimulus Presentation Parameters
Each image was shown for a duration of 150 ms immediately
followed by the next in the trial. No dark screen was displayed
between the pictures, as shown in Figure 3. One trial consisted of
12 pictures for P1 and P4, 16 for P2, and 28 for P3, as summarized
in Table 1. The application randomizes the order of the images
during the trial. The training phase consisted of 50 and the testing
phase consisted of 30 trials.

2.4 Data Processing and Classification
The EEG signals are acquired sample-wise from the Unicorn
Hybrid Black system via the Bluetooth connection. The
application then synchronizes the EEG samples with the image
presentation. To reduce the mains line interference (50 Hz EU/
60 Hz United States) the EEG samples are digitally filtered using a
second-order 50 Hz Butterworth Notch filter followed by a
second-order 60 Hz Butterworth Notch filter. Finally, a
second-order Butterworth bandpass filter with a band ranging
from 0.5 to 30 Hz is applied to improve the signal-to-noise ratio.
After the single samples are filtered, 1,500 ms-epochs are created
using 100 ms before and 1,400 ms after the stimulus onset. For
feature extraction, each epoch is baseline corrected using the
100 ms before the stimulus. The epoch is downsampled by a
factor of 1:12 and moving average filtered using a window size of
3. The mentioned procedure results in a feature with a length of
248 (31 samples * 8 channels). Eye blinks are not corrected/
removed and there was no artifact rejection algorithm used.

2.5 Ranking
The target and non-target features recorded during the
training phase are used to fit a time-variant linear
discriminant analysis model. Cai et al. (2013) have already
proven that a linear regression in the LDA subspace is
mathematically equivalent to a low-rank linear regression.
Based on this knowledge, the features generated by
subsequent images during the ranking are projected into
the LDA subspace and the resulting distance (score value)
is used to rank the new images.

2.6 Data Evaluation
2.6.1 Electroencephalography Study
The system provides the user with the possibility of recording the
stimulus synchronized EEG data during the experiment. The
EEG recordings were averaged over the 30 trials and the 21
participants to visualize the recorded visual evoked potentials
measured during the experiment. This averaging was done for
every paradigm using the MATLAB R2020a software.
Additionally, the P300 latency and amplitude were marked by
means of maxima detection on the averaged waveforms for each
paradigm. This results in one P300 amplitude and latency per
electrode and paradigm. The amplitude and latency differences
are examined for significance using a paired sample t-test.

2.6.2 Ranking Accuracy
The system produces score values for every displayed image.
These values were compared to evaluate the image ranking
performance. If the target class image had a higher score value
than the non-target class’s images, the result was determined to be
a successful ranking. The values for every image were averaged
and compared again for each trial. This evaluation was done for
1 – 30 trials and further averaged over every subject (n � 21).
Based on this information, a ranking accuracy could be estimated.
This accuracy corresponds to the true positive rate described as
the ratio between correct classifications and the total number of
classifications.

3 RESULTS

3.1 Electroencephalography Study
Figures 4, 5 depict the calculated difference between target and
non-target stimuli averaged over 21 participants. Figure 4A
illustrates the visual evoked potential produced by paradigm
P1. Figure 4B shows the visual evoked potential produced by
paradigm P2. Figure 5A corresponds to the Visual evoked
potential produced by paradigm P3. Figure 5B illustrates the
visual evoked potential produced by paradigm P4. The latency
(ms) and the amplitude (μV) of the P300 are marked for each
electrode position within the individual graphs. Table 3 lists the
latency and amplitude derived from Figures 4, 5 for all four
paradigms and all eight electrode positions.

Paradigms with female faces and gray-scale images produce
the following mean P300 latencies: For P1, the latency is
233 ms (Fz-Pz) and 222 ms (PO7-PO8). For P2, it is 232 ms
(Fz-Pz) and 226 ms (PO7-PO8). Changing the paradigm to

FIGURE 3 | Schematic overview of the stimuli presentation with an
example response averaged over the training trials of one subject with regard
to electrode placement. The evoked potential is drawn in red for the target
stimulus and blue for the non-target stimulus.
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familiar and unfamiliar faces, the latency increases to 340 ms
(Fz-Pz) and 356 ms (PO7-PO8) for P4 and 314 ms (Fz-Pz)
and 307 ms (PO7-PO8) for P3. These values can be seen in
Table 3.

The P300 amplitude evoked by paradigms with different target
to non-target ratios decreases from 5.13μV (Fz-Pz) and 2.16μV
(PO7-PO8) for P1 (ratio � 1:11) to 3.97μV (Fz-Pz) and 0.54μV
(PO7-PO8) for P2 (ratio � 5:11). Similarly, the amplitude
decreases from 3.70μV (Fz-Pz) and 2.65μV (PO7-PO8) for P4
(ratio � 1:11) to 2.86μV (Fz-Pz) and 1.86μV (PO7-PO8) for P3
(ratio � 4:24). These values can be seen in Table 3.

3.2 Image Ranking Performance
In this section, the accuracy results for the first and second parts
of the experiment are presented. For part one, the application was
trained on the EEG features produced by one female face (target)
and 11 gray-scale images (non-targets). For part two, the system

was trained on the EEG features produced by one familiar face
(target) and 11 unfamiliar faces (non-targets). The training
consisted of 50 trials. Paradigms P1, P2, and P3 were used for
testing with 30 test trials each. Figure 6A depicts the accuracy for
part one averaged over all subjects. Analogously Figure 6B shows
the accuracy for part two averaged over all participants. Figures
6C,D depict the median accuracy as well as the range between the
25th and 75th percentiles (shaded area) for parts one and two
respectively over all participants.

The results shown in Figures 6A,B are summarized in Table 4
by additional averaging over all trials. The achieved accuracy after
30 trials is listed in the columnmarked with “Final” and represents
the ranking accuracy at 30 trials. For part one of themeasurements,
the application reached an online accuracy of 100, 95.5, and 14.8%
for P1, P2, and P3, respectively. When switching the training
paradigms the achieved accuracy changes to 38.6, 34.6, and 86.4%
for P1, P2, and P3 in part two of the measurements.

FIGURE 4 | The calculated difference between target and non-target stimuli averaged over 21 subjects (A) and (B) depicts the visual evoked potential produced by
paradigms P1 and P2, respectively. These two paradigms had female faces as targets and gray-scale images as non-targets. The black dotted line marks the stimulus
presentation. The P300 latency and amplitude are noted in the brackets [(ms), (μV )].
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4 DISCUSSION

The main objective of this study was to evaluate and present a
novel visual evoked potential-based image ranking BCI. In the

first step, the recorded EEG signals are discussed. Second, the
achieved accuracy will be addressed.

4.1 Electroencephalography Study
The P300 peak (averaged over all participants and trials) is visible
in Figures 4, 5 for all paradigms (P1, P2, P3, P4) at the electrode
positions {Fz,C3,Cz,C4, Pz, PO7,Oz, PO8}.

4.1.1 P300 and Task Complexity
When comparing the average target P300 response time of
female/gray-scale (P1, P2) to familiar/unfamiliar faces (P3, P4)
paradigms, a significant (p < 0.001) increase in the mean P300
latency can be seen at all electrode positions, visible in Figures 4,
5 and listed in Table 3. The delay could be caused by the task
complexity associated with difficult stimulus discrimination, as
Polich (2007) suggested. This complexity might be the case when
distinguishing familiar from unfamiliar faces. In contrast,
distinguishing a colored female face image from a gray-scale
photo provides less of a challenge. Examining the average
amplitude differences at the electrode positions Fz, C3, Cz, C4,
and Pz analogously to the response times, a decrease for P4-P1
and P3-P2 is visible in Figures 4, 5. Only the comparison between
P4-P1 should be considered, as both paradigms have an equal target

FIGURE 5 | The calculated difference between target and non-target stimuli averaged over 21 subjects (A) and (B) depicts the visual evoked potential produced by
paradigms P4 and P3, respectively. These two paradigms had familiar faces as targets and unfamiliar faces as non-targets. The black dotted line marks the stimulus
presentation. The P300 latency and amplitude are noted in the brackets [(ms), (μV )].

TABLE 3 | P300 latency (ms) and amplitude (μV ) taken from Figures 4,5 is listed
for every paradigm (P1, P2, P3, and P4) and all electrode positions averaged
for all subjects. The average of Fz, C3, Cz, C4, Pz, and PO7, Oz, PO8 is calculated
separately and listed.

Electrode Female face/Gray-
scale

Familiar/unfamiliar
faces

Position P1 P2 P4 P3

Fz 236 (5.61) 232 (4.69) 339 (3.72) 320 (3.02)
C3 232 (4.98) 232 (3.93) 339 (3.29) 312 (2.62)
Cz 232 (5.52) 232 (4.51) 339 (4.00) 316 (3.02)
C4 232 (4.87) 232 (3.64) 339 (3.56) 324 (2.63)
Pz 232 (4.68) 232 (3.09) 343 (3.94) 297 (3.03)
PO7 225 (2.89) 229 (1.32) 370 (2.19) 293 (1.84)
Oz 229 (1.42) 229 (0.24) 351 (3.19) 339 (2.05)
PO8 213 (2.17) 221 (0.07) 347 (2.56) 290 (1.69)
[Fz,C3,Cz,C4,Pz]Avg 233 (5.13) 232 (3.97) 340 (3.70) 314 (2.86)
[PO7,Oz,PO8]Avg 222 (2.16) 226 (0.54) 356 (2.65) 307 (1.86)
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to non-target ratios of (1:11), while P2 and P3 have a ratio of (5:11)
and (4:24), respectively. This argument is based on the fact that the
P300 amplitude induced by an oddball paradigm depends on the
oddball stimulus’s rarity as described by (Luck, 2014), (Wolpaw,
2012), and (Duncan-Johnson and Donchin, 1977). The slightly
higher amplitude of P1, compared to P4, could be caused by the
stronger contrast between the target and non-target images.
Consequently, the more pronounced difference could magnify the
resulting P300 response, even though they have the same target to
non-target ratio.

4.1.2 P300 and Target to Non-Target Ratio
As early as 1977, Duncan-Johnson and Donchin (1977) observed
that the P300 amplitude correlates with the associated oddball a
priori probability. Simply put, the less likely the oddball (target)
stimulus is to occur, the higher the P300 amplitude. This observation

is also visible in the measurement data. A significant (p < 0.001)
decrease in amplitude is visible for the ratios of 1:11(P1) and 5:11
(P2) listed in Table 3. Analogously, a reduction in the P300
amplitude for 1:11(P4) and 4:24 (P3) is also visible.

To sum up section 4.1.2 and section 4.1.1, the P300 amplitude is
highly dependent on the oddball frequency for any given paradigm.
In contrast, the P300 latency and waveform shape are dependent on
the task complexity of the specific paradigm class.

4.2 Classification Accuracy
The mean and median accuracy for the first and second parts of
the measurement listed in Table 4 does not represent the
achieved accuracy for 30 consecutive trials but rather the
averaged accuracy for 1 to 30 trials. The achieved average
accuracy for 30 trials is also listed in Table 4 in the “Final”
accuracy columns. The EEG data were processed and classified

FIGURE 6 | Accuracy results for 1 to 30 test trials and paradigms P1, P2, and P3 for 21 subjects. Measurement setup part one (A), (C) (Training paradigm P1) and
part two (B), (D) (Training paradigm P4). On the left side (A) and (B) depict the average accuracy. On the right side (C) and (D) depict the median accuracy with the
shaded area representing the 25th (Q1) and 75th (Q3) percentiles.

TABLE 4 | Ranking performance accuracy results, taken from Figure 6 (A) for part one and Figure 6 (B) for part two. The mean is an average of 1–30 test trials. The median
is calculated of trials 1 to 30, and the final accuracy value is the achieved accuracy after 30 trials. Additionally, the accuracy difference between the two measurement
parts is listed and is calculated by subtracting the respective accuracy value of part one (training with P1) from part two (training with P4).

ACC [%] Figure 6A ACC [%] Figure 6B ACC [%] difference

Test Final Mean Median Final Mean Median Final Mean Median

P1 100 97.8 100 38.6 36.4 37.3 − 61.4 − 61.4 − 62.7
P2 95.5 86.9 93.3 34.6 37.3 28.9 − 60.9 − 49.6 − 64.6
P3 14.8 12.9 13.5 86.4 72.0 78.7 + 71.6 +59.1 +65.2
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online. No cross-validation was performed as the randomization
constituted by cross-validation would lead to an over-optimistic
accuracy estimation, as Wolpaw (2012) suggested. The
combination of these two aspects led to a realistic accuracy
assessment, as listed in Table 4. The final average accuracy
after 30 trials combined with the mean and median can serve
the purpose for a relative comparison between the test paradigms
and, more importantly, between different training paradigms’
effects on the ranking performance. The average and median
achieved online accuracy for a specific test trial count for all
subjects is visible in Figure 6. The average rather than the median
accuracy was discussed further, since the average is strongly
affected by subjects where the application performed worse.
Therefore, the average provides a more practical estimation.

4.3 Measurement for Part One
Figure 6A shows that an average accuracy of 100% for test
paradigm P1 was reached after seven trials. Mean accuracy of
100% translates to the target images being ranked on top for all
subjects after seven trials. The mean accuracy for test paradigm P2
never reached 100%. However, a satisfactory accuracy of 90% was
eventually achieved at 10 test trials and increased to over 95% for 20-
30 test trials. In paradigm P2, all five female face pictures must be
ranked on top to be considered successful. This condition makes the
estimate of accuracy even more conservative. An accuracy of 95.5%
means that the application ranked all five female face pictures on top
for more than 95.5% of the time for all subjects after 30 trials. The
reason why even at 30 test trials, the accuracy for P2 never reached
100% could be that the training was performed on P1, and the target
visual evoked potentials produced by P1 and P2 slightly differ in
amplitude, as discussed in section 4.1. The visual evoked potential
produced by P3 not only varies in amplitude but also significantly in
latency and waveform, as discussed in section 4.1. This difference in
waveform shape and amplitude could explain why the mean
accuracy for test paradigm P3 never reached a good value with
only 14.8% at 30 trials.

4.4 Measurement for Part Two
Using one familiar face and 11 unfamiliar faces (P4) as a training
paradigm in the second part of the measurement results in an
accuracy change for all test paradigms as expected when
considering the EEG study results. The accuracy of test
paradigms P1 and P2 decreased by 61.4 and 60.9%,
respectively. The achieved accuracy at 30 test trials are
depicted in Figure 6B and listed in Table 4. They are 38.6
and 34.6% for P1 and P2. The mean and median accuracy
estimation for 1–30 trials from Table 4 shows a decrease by
61.4 and 62.7% for the ranking of test paradigm P1. Similarly, the
mean and median accuracy estimation for test paradigm P2
decreased by 49.6 and 64.6%, respectively.

Confirming expectations that training the application on a
paradigm consisting of a familiar face and unfamiliar faces, the
achieved accuracy after 30 trials increases by 71.6–86.4% for
paradigm P3. Similarly, the mean and median test accuracy for 1
to 30 trials for paradigm P3 increased by 59.1 and 65.2%. This is
visible in Figure 6B and is listed in Table 4. To rephrase these
results into a ranking performance, this means that all four

familiar faces are ranked on top of the 24 unfamiliar faces by
the application 86.4% of the time.

For paradigms P3 and P4, the subjects had to provide pictures of
familiar faces, but these were not always of equivalent quality/brightness
to the stock images. The quality variation could be why the accuracy in
part two of themeasurement for test paradigmP3wasnot as high as the
accuracy for P2 in part one. The quality of the images could be a
significant factor due to the short presentation time of 150ms.

In summary, it is plausible to state that the choice in training
paradigm and the ratio of targets to non-targets for training and
test paradigms are essential for the system’s performance. These
choices change the resulting classification accuracy significantly.
For example, training the application on P1 (female face/gray-
scale) will not yield satisfactory ranking performance for test
paradigm P3 (familiar/unfamiliar faces). Conversely, training the
system on P4 (familiar/unfamiliar faces) will lead to a
significantly better ranking performance for similar paradigms
P3 (familiar/unfamiliar faces) but decrease the ranking
performance for P1 and P2 (female face/gray-scale).

5 CONCLUSION AND FUTURE WORK

This study focused on evaluating and presenting the image ranking
software Unicorn Blondy Check. The software is based on the P300
component of the visually evoked potential. The evaluationwas done
by testing different visual paradigms and training the system to
detect such differences. By studying the EEG recordings, it was
possible to notice the differences in the visually evoked potential for
each paradigm. These observed differences meet the expectations
suggested by previous research (Donchin and Smith, 1970;
McCarthy and Donchin, 1981; Magliero et al., 1984; Comerchero
and Polich, 1999; Polich, 2007). Depending on the paradigmused for
training, average accuracy of 100% for P1, 95.5% for P2, and 86.4%
for P3 were achieved. Selecting the inappropriate training paradigm
resulted in decreased ranking performance as expected from the
EEG study findings.

Our results showcase the software’s image ranking capabilities.
Even complex tasks such as ranking photos of familiar faces
higher than unfamiliar faces yielded satisfactory results.
Nevertheless, several open questions worth investigating in
future research remain, which will improve the system’s
performance. In future work, we plan to address the following:

• To change the stimulus presentation parameters
(presentation-time, inter-stimuli-time, presentation order).

• To try different paradigms to investigate what is possible to
classify (e.g., classifying affection, determining advertisements
with the highest impact, or finding concealed information
using paradigms containing crime-related images).

• To measure the accuracy of dry EEG acquisition.

The application areas of such a system are numerous. For
researchers, this system can provide an easy-to-use tool for
further investigation of the visual evoked potentials. It
provides not only classification capabilities but also logs
stimulus-synchronized EEG data. The build-in paradigm
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editor enables rapid testing. In neuromarketing, this system can
supplement the existing methods for determining
advertisement’s impact. With it, one can directly compare the
brain’s responses to successful and unsuccessful advertising. The
software can be used to check whether the image ranking
presented in this study also works with paradigms that do not
contain faces, for example, different shoe models and dishes or
holiday destinations. However, to do this, one must construct
calibration paradigms containing images of objects that the test
person prefers in comparison with the others. Then sets of
unknown images can be examined for preferences or lack of
preferences. Researchers in the area of polygraphy and concealed
information testing could also benefit from such an easy-to-use
system. Finally, it can be a great hands-on learning tool for the
everyday person and students interested in BCI as it is more
affordable than other EEG systems on the market.
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