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Smart musical instruments (SMIs) are an emerging category of musical instruments char-
acterized by sensors, actuators, wireless connectivity, and embedded intelligence. To date, a
topic that has received remarkably little attention in SMIs research is that of defining a file
format for the offline exchange of content produced by such instruments. To address this gap,
in this paper we propose the Smart Musical Instruments Format (SMIF), a file format specific
to smart musical instruments. We also provide an implementation of an encoder, decoder, and
player for it. Such a format is not completely fitting any current standard but is strongly inspired
by the MPEG-A: Interactive Music Application Format (IM AF). In our implementation we
integrated IM AF with tracks related to sensors, MIDI, as well as the representation of the
instrument’s sound engine via the Smart Musical Instruments Ontology. SMIF enables the
creation of novel applications for the offline exchange of SMIs configuration and data, some
of which are illustrated in the paper.

0 INTRODUCTION

In recent years a novel class of musical instruments has
emerged as the intersection of digital musical instruments
and Internet of Things devices: the so-called “smart mu-
sical instruments” (SMIs) [1]. This family of instruments
draws upon different lines of existing research including
augmented instruments [2], embedded audio [3, 4], em-
bedded acoustic instruments [5], and networked music per-
formance systems [6, 7]. At hardware level they are char-
acterized by sensors, actuators, wireless connectivity, and
on-board processing. These features enable SMIs to di-
rectly exchange musically relevant information with one
another as well as communicate with a plethora of exter-
nal devices (such as smartphones, wearables, virtual reality
headsets, or stage equipment). Examples of existing smart
musical instruments developed in industrial contexts are
the Smart Guitars by HyVibe or Elk [8], INSTRUMENT
1 by Artiphon, and gTar by Incident, while instances from
academic endeavors are the Smart Mandolin [9] and Smart
Cajón [10].

SMIs are instances of Musical Things within the “Inter-
net of Musical Things” (IoMusT) paradigm [11], an exten-
sion of the Internet of Things [12] to the musical domain.

∗Corresponding author: Luca Turchet; E-mail: luca.turchet@
unitn.it

Within this paradigm, SMIs can exchange content with
other Musical Things leveraging application and services
built on top of the connectivity infrastructure. According to
the vision proposed in [1], an SMI is characterized by five
core capabilities that define its embedded intelligence: i)
knowledge management, i.e., the capability of maintaining
knowledge about itself and the environment; ii) reasoning,
i.e., the capability of making inferences on the acquired
knowledge; iii) learning, i.e., the capability of learning from
previous experience; iv) human-smart instrument interac-
tion, i.e., the capability of interacting with the player in
ways that extend the bare sound production, such as adap-
tation and proactivity; v) smart instrument-Musical Things
interaction, i.e., the capability of wirelessly exchanging in-
formation with a diverse network of Musical Things.

To date, a topic that has received remarkably little atten-
tion in SMIs research is that of defining a file format for the
exchange of content produced by such instruments, in both
offline and online scenarios. In the real-time case, content
generated by an SMI can be streamed continuously toward
a destination, whereas in the offline case the content can be
saved in a format and then shared subsequently. The present
study focuses on the offline scenario. In previous work we
preliminarily investigated the design of a format specific to
SMIs in offline scenarios [13]. We adopted a participatory
design methodology consisting of a set of interviews with
studio producers familiar with the smart instruments con-
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cept. The purpose of such interviews was that of identifying
a set of use cases for a format encoding data generated by
SMIs, with the end goal of gathering requirements for its
design. Such work identified in the IM AF (MPEG-A: In-
teractive Music Application Format) [14, 15] a potential
candidate to implement a file format for SMIs.

IM AF is a multitrack format that allows users to mix
individual tracks for different musical instruments by ad-
justing their volume and enables the association of syn-
chronized text (e.g., for lyrics). Moreover, it supports a set
of presets for the mixes created by the producer as well as
a user mixing mode (optionally encompassing interactivity
rules). Specifically, an IM AF file consists of: i) multiple
audio tracks: they contain the audio signal related to each
instrument or voice and may be encoded either in 2D or 3D
spatial audio; ii) groups of audio tracks: the definition of the
structure of the audio tracks into groups; iii) preset data: a
set of pre-defined mixes of the multiple tracks; iv) user mix-
ing data and interactivity rules: this information relates to
the interaction of the user with the mixing parameters in the
file; v) metadata: this is data related to the music contained
in the file and can be both static (e.g., information about the
song or album and still pictures) and time-dependent (e.g.,
the synchronized lyrics).

The structure of an IM AF file is derived from the ISO-
Base Media File Format standard (ISOBMFF),1 the most
widely deployed standard in the music2 [14, 15] and media
industry (aka .mp4). Another standard that is ISOBMFF-
compatible is MPEG-V.3 This format is conceived to sup-
port, among other things, the encoding of sensors data.

This paper investigates the design and implementation of
an encoder and decoder for a file format for content related
to SMIs, starting from the requirements reported in [13].
The proposed format is called the Smart Musical Instru-
ments Format (SMIF) and has extension .smi. The format is
based on the IM AF and integrates features from ISOBMFF
related to sensors and includes the configuration of an SMI.
Such a configuration adheres to the Smart Musical Instru-
ments Ontology [16], which allows one to represent the
hardware and software components of an SMI. We clarify
that the proposed format does not fit any current standard.

Different ways exist today for storing heterogeneous data
for musical performance. For instance, Digital Audio Work-
stations, such as Ableton Live, and computer music plat-
forms, such as Pure Data [17], can be used to encode a
musical performance or project involving audio, MIDI, and
automation tracks. However this process on Digital Au-
dio Workstations requires some manual work to set up and
cannot be embedded, while on Pure Data it can be em-
bedded but is a time-consuming endeavor. Nevertheless the
proposed format is conceived specifically for SMIs (which
are based on embedded systems) and has the advantage to

1ISO/IEC 14496-12:2015 “Information Technology – Coding
of Audio-Visual Objects – Part 12: ISO Base Media File Format”

2E.g., www.stems-music.com/stems-partners
3ISO/IEC 23005-1:2020, “Information Technology – Media

Context and Control (MPEG-V) – Part 1: Architecture”

Fig. 1. Block diagram of an example of sound engine running on
a smart musical instrument. The gray areas indicate the various
sub-components (e.g., separate tracks of effects chains or different
parallel instances of synthesizers).

improve the experience of setting up the encoding process
compared to existing approaches.

1 BACKGROUND

1.1 SMI’s Sound Engine
The sound engine of an SMI is responsible for the gener-

ation of the instrument’s digital sounds and may encompass
various components (see Fig. 1). For instance, a component
can process the sounds detected by a microphone by apply-
ing digital audio effects to it, trigger sound samples thanks
to a sampler, generate sounds resulting from the control of
synthesizers and drum machines, and play back different
backing tracks. The parameters of each of these compo-
nents of the sound engine can be modulated by the sensors
present in the sensor interface by means of a set of map-
ping rules [18]. The sound engine is also responsible for
recording the overall sound resulting from the mixing of
all such components but can also record the contribution of
each component in separate files.

1.2 The Smart Musical Instruments Ontology
The Smart Musical Instruments Ontology4 was con-

ceived to address interoperability issues of heterogeneous
SMIs exchanging information between each other [16]. The
ontology models the basic concepts of the hardware and
software components of an SMI and relates to several ex-
isting ontologies. These include the SOSA Ontology for the

4https://w3id.org/smi#
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representation of sensors and actuators [19], Audio Effect
Ontology dealing with the description of digital audio ef-
fects [20], Music Ontology that deals with the description
of the music value-chain from production to consumption
[21], Studio Ontology for representing the domain of tech-
nical workflows occurring in music production [22], and
IoMusT Ontology for the representation of Musical Things
and IoMusT ecosystems [23].

In more detail, the requirements for the ontology were
the following. The SMI Ontology should be able to: i)
represent the concept of SMIs as an instance of Musical
Things, including its type, characteristics (including the
number and type of inputs and outputs), the structure of its
sound engine, and the geographical position; ii) represent
the concept of application and service related to SMIs,
including its purpose, level of interactivity, type, and user;
and iii) describe attributes of the music at a given time,
including low and high-level features. A practical use of
the ontology in an applicative context has been recently
reported in [24] for the case of the creation of a database of
SMIs.

1.3 Use Cases
The following main use cases for the offline exchange of

content generated by an SMI were identified in [13].

1.3.1 Advanced Studio Productions
A format encompassing various kinds of information re-

lated to an SMI’s affordances would be useful in contexts
of studio production as it could enable novel ways to edit
a recording generated by a smart instrument. In addition to
the conventional recording of the instrument into an audio
file, a new format specific to SMIs may encompass infor-
mation relating to different aspects of the instrument, such
as the sensors signals, different audio tracks generated by
the sound engine, or structure of the sound engine.

A studio producer could interact with these new levels
of information in order to create a modified version of the
original recording. For instance, the format could enable:

� The mixing of the various audio tracks related to
the different components of the sound engine of
the smart instrument (e.g., the instrument signal
processed with effects, synthesizers, samplers, and
backing tracks);

� The application of effects to the audio tracks cor-
responding to the various components of the sound
engine; or

� The modification of the mappings between sensors
values and the parameters of the sound engine (e.g.,
a sound sample triggered by a sensor in the instru-
ment’s sensor interface could be substituted by an-
other sound sample; the sensor associated to a pa-
rameter of an effect could be associated to a param-
eter of another effect).

1.3.2 Smart Instrument Configuration
As the format encompasses all information related to the

configuration of an SMI, by decoding the format content,
the settings regulating the behavior of a certain SMI could
be used to configure an instrument of the same kind (i.e.,
the format is used as a preset). For instance, a format saved
in a certain SMI and loaded into another SMI having the
same characteristics could configure:

� The structure of the sound engine: this may include
which components are present, such as the chain
of the sound effects applied to a microphone or the
number, type, brand, and model of the involved dig-
ital synthesizers, samplers, or drum machines;

� The mappings between the sensors and sound engine
parameters; or

� A set of parameters regulating the behavior of the
instrument, such as the sampling rate of the audio
tracks and sensor values, beats per minute of the
backing tracks, and initial values of all the parame-
ters of the sound engine.

1.3.3 Score Information Exploitation
The file format encompasses the MIDI score of each

component of the sound engine, which may include the
notes generated by the drum machine and those generated
by the synthesizers, as well as the notes generated by the
acoustic instrument. The latter could be achieved by means
of automatic transcription techniques (see, e.g., [25]) and
also include information related to a certain playing tech-
nique associated to each note (see, e.g., [10]). The infor-
mation about the score could be useful for composition
purposes, where the content of the recorded file could be
extended with additional tracks composed on the basis of
the provided score.

1.3.4 Learning and Training
A decoder and player for the format (for both the cases in

which it is placed inside the instrument and on an external
device such as a laptop) could be used for learning and
training purposes. For instance, a player of a certain SMI
could load the file format of a particular music piece, mute
all (or some of) the interactive tracks (i.e., the track of the
recorded instrument and those resulting from the interaction
with the sensors), and play over the remaining tracks (e.g.,
the backing track) to practice the piece in all (or some of)
the interactive parts.

1.3.5 Mulsemedia Reproductions
The decoder and player, for instance running on a PC

or smartphone, could be used in conjunction with Musical
Things providing additional sensory content to the music
played. This use case relates to contexts of mulsemedia (i.e.,
multi-sensory media) applications [26] within the Internet
of Musical Things paradigm, where a smart musical instru-
ment is used to control in real time Musical Things aiming
at enriching the audience’s musical experience with content
involving other sensory modalities, such as visual content
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Fig. 2. The Smart Musical Instruments Format structure.

(e.g., delivered on conventional screens or head-mounted
displays) and haptic content (e.g., delivered by musical
haptic wearables [27]). The additional content should be
perfectly synchronized with the musical content of the file
format.

2 REQUIREMENTS

2.1 Requirements for the Format
The following design requirements for the specification

of the file format were identified in [13]. SMIF, see Fig. 2,
shall contain:

� Audio tracks: these are related to the outputs gener-
ated by each of the components of the sound engine
as well as the overall output;

� Sensor tracks: the values of each sensor (both ana-
log and digital) present in the sensor interface are
represented;

� Static metadata: these are related to the instrument
and its configuration, including i) type, brand, and
model of the instrument; ii) information about the
sensor interface (including how many sensors, which
type); iii) the structure of the sound engine (including
which components are present, the chain of effects,
and the brand and model of the audio plugins uti-
lized); iv) the sensors-to-sound parameters mapping,
including the range of variation of each controlled
parameter, type of mapping (e.g., one-to-one, one-
to-many, etc.), and type of mapping function (e.g.,
linear, logarithmic, exponential, ad-hoc, etc.); and v)
the sampling rate for audio and sensor tracks; and

� Dynamic metadata (i.e., time-based): these are re-
lated to i) which subcomponents of each component
are active at a given time (e.g., in a section of a mu-
sical piece a synthesizer is active, while in another

section it is not); ii) the MIDI score of the piece, in-
cluding additional information related to each note
such as the type of gesture that generated it; and iii)
the beats per minute of the eventual backing track.

SMIF shall support:

� Mixing: the audio tracks can be muted, removed,
or substituted, and their individual volume can be
adjusted and effects can be applied to them;

� Change of structure of the sound engine: each of
the components and subcomponents of the sound
engine can be modified (e.g., a certain sound effect
plugin can be substituted with another one);

� Change of mapping: each of the mappings can be
modified in all its parts, including the substitution of
the controlled parameter and its rage of variation as
well as the associated mapping function; and

� Interaction with other Musical Things: the repro-
duced audio content should be synchronized with the
multisensory content delivered by connected Musi-
cal Things.

2.2 Requirements for the Encoder
The encoder is responsible for creating the .smi file. It

was primarily conceived to run on the embedded system of
the SMI producing the content. A secondary use case for it
was the creation of an .smi file from the various tracks and
metadata modified on a desktop PC according to the use
cases identified in Sec. 1.3. This led to the requirement of
an encoder capable of running on different platforms.

Furthermore, an .smi file should be encoded by encom-
passing various audio formats (e.g., pulse-code modulation
[PCM] and mp3) with different sample rates and resolu-
tions (e.g., 44.1 kHz at 16 bits). Sensor tracks should be
encoded in a raw format such as PCM, with a much lower
sample rate than the audio tracks (e.g., 1 kHz), with resolu-
tion of 10 to 16 bits. The metadata related to the instrument
configuration should adhere to the RDF data model (e.g., a
plain text with Turtle syntax), while metadata related to the
MIDI score should be encoded as a polyphonic MIDI file.

2.3 Requirements for the Decoder and Player
The decoder was devised to accomplish various pur-

poses. The first was that of running directly on the SMI
following the reception of an .smi file on it, e.g., sent from
an external device. In this case the decoder is used to ex-
tract the instrument configuration metadata as well as the
backing tracks in order to feed another program with them,
which configures the instrument, i.e., the received .smi file
would act as a preset.

The second purpose of the decoder was that of being used
together with a player. We considered three approaches all
related to a cross-browser and cross-platform web app (in
part inspired to the IM AF player reported in [28]):

1. Client-side (local): a simple web page running lo-
cally on a desktop PC;
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2. Client-side (with server): a web app responsible
for the decoding of the .smi file (used in conjunction
with a server that sends the .smi file to it); and

3. Server-side: a web app used in conjunction with a
server, where the server is responsible for the decod-
ing of the .smi file.

All three approaches should be able to read an .smi file
and perform the basic functionalities of the format such as
mixing (e.g., enabling/disabling an audio track and chang-
ing its volume) as well as reading the sensor tracks and for-
warding their values to a port of the local machine (another
software would listen to such a port and repurpose the sen-
sors values, e.g., to drive synthesizers or control mulseme-
dia applications). To implement the latter, the Open Sound
Control (OSC) protocol was chosen.

3 IMPLEMENTATION OF THE ENCODER

The creation of the encoder started from the one de-
scribed in [15], amending it to accommodate the SMIF
features. It has been implemented in the C programming
language and does not use external libraries. In this way
we can ensure that it can be compiled on any platform.
The following paragraphs explain the implementation of
the encoder.

3.1 Audio Tracks
As in [15] the File Type Box ftyp describes the charac-

teristics of the audio tracks, containing the same values of
the IM AF format. We implemented the im02 brand that
supports up to six simultaneous tracks of audio, so the SMI
file can be reproduced even with limited processing capa-
bilities, such as a mobile device. The total size of this box
is 24 bits.

Differently from the previous implementation, to use the
same format of an SMI output a PCM format audio track
is encoded. The encoder reads a .wav file, searching for
information about the samples in the WAVE header at the
beginning of the file. After the interpretation of the informa-
tion such as sample rate and size, all the samples are stored
in the Media Data Box mdat. For each track the chunk posi-
tion in the mdat box is saved for boxes described below. The
audio tracks are saved in sequence with their corresponding
sensor tracks (e.g., the data sequence in mdat with an audio
track with two sensors and another with one sensor will be:
audio track 1 – sensor track 1 – sensor track 2 – audio track
2 – sensor track 3). Further information about the samples
will be stored in the Sample Table Box stbl.

An SMI file stores the audio tracks as specified by the IM
AF standard for PCM format tracks. The internal timescale
stored in the Media Header Box mdhd is set to the original
.wav file sample rate. This means that the stbl box the
Time To Sample Box stts has the time delta set to 1 and
sample count is equal to the original file sample number;
the Sample To Size Box stsz values contain only one entry
of sample size corresponding to the size of original track
samples for each channel. Finally, the Sample Description

Box stsd stores the remaining technical specifications of
the audio tracks.

The position of the media data is stored in the Chunk
Offset Box stco and only one chunk is written in the Sample
To Chunk Box stsc, as the PCM format has a constant bit
rate and all the frames have equal size.

3.2 Sensor Tracks
An important feature of the SMI format is the encoding

of sensor tracks. They are recorded simultaneously along
the SMI audio track in separate tracks, each at a 1-kHz
sample rate mono channel, with float values ranging from
0.000 to 1.000. Each value is encoded in unsigned 16-bit
integers by multiplying the original number by the largest
uint16 number (65,535) and stored in a .wav file with a
regular WAVE header at the beginning that specifies the
sample information.

In a similar way to audio tracks, sensor track details are
stored in Track Boxes trak but with some values set corre-
sponding to the Timed Metadata type of track. The media
data is written in the Media Data Box mdat immediately af-
ter the referenced audio track. The Track Header Box tkhd
has the volume value set to 0 and the Handler Box hdlr has
name and handler type values set to “meta.”

The Track Box contains an additional Track Reference
Box tref, which contains a Track Reference Type Box set to
cdsc, indicating a reference track. The ID of the SMI track
with which the corresponding sensor track was recorded is
stored in the track ID reference field.

The Sample Description Box stsd contains a Sample De-
scription Table Box with type set to mebx that in turn stores
Metadata Key Table Box keys. In this table a Metadata Key
Box is defined and its type is set to “sns” plus the number of
the sensor track (e.g., “sns1” for sensor track 1), allowing
up to nine simultaneous sensors in one file. This definition
can be changed to “sn” plus two digits, allowing up to 99
sensors (sn01 to sn99).

Then two additional boxes define the metadata key char-
acteristics: First, Metadata Key Declaration Box keyd spec-
ifies the type of sensor. For now key namespace is set to
“mdta,” which indicates a string format for the key value,
which is set to “snsr.” This value can be extended to specify
the model or type of the sensor.

Second, the data format described in the WAVE header
of the sensor tracks is stored in the Metadata Datatype Def-
inition dtyp, which sets the data namespace to 0, indicating
a well-known value of metadata, and datatype value to 76,
representing an unsigned big-endian 16-bit integer.

3.3 Static Metadata
There are two types of static metadata included in an .smi

file:

� Metadata about groups of tracks present in the file;
and

� Metadata related to the instrument configuration
with Turtle syntax.
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Both boxes are contained at moov level, as they specify
information relative to the entire file and and are stored
after all the audio and sensor tracks.

At first, Group Container Box grco is implemented as
in the IM AF standard. If both types of tracks are set to
be encoded by the user, two groups will be created: the
first contains all the audio tracks and the second contains
the sensor tracks. For each group a Group Box grup stores
relative trak IDs and sets activation mode value to 1 and
reference volume to 1 for audio tracks and 0 for sensor
tracks. The name and description fields store additional
information representing those groups.

The second box is a Metadata Box meta that, similarly to
a common metadata box, contains additional information
about the entire track. In this case the Handler Box hdlr
of meta is set to handler type “meta” and name “ttl,” to
indicate a .turtle specification file. Next to the Handler Box,
a Turtle (TTL) Box ttl is created. It contains three fields,
corresponding to size (32 bits), type (“ttl,” 32 bits), and
version (32 bits), plus the data field containing the entire
turtle preset file. It is set to be statically read from the file
“preset.ttl” in the same folder of the encoder if the user
accepts to include it in the Terminal dialog.

3.4 Dynamic Metadata
The dynamic metadata featured in the SMI file corre-

sponds to a MIDI polyphonic representation of some or
all the audio tracks in the file. The actual media data is
stored from the .mid file in the mdat box, while the infor-
mation about its type and position is stored next to the static
metadata boxes.

Another Metadata Box meta is created at moov level,
with a Handler Box hdlr set to handler type “meta” and
name “midi” to indicate a MIDI type of dynamic metadata.
Next, Item Location Box iloc stores the position of the
media data in the base offset field and the size of the entire
data in the extent length field; last, the Item Info Box iinf
contains an Item Info Entry Box infe that specifies the type
of metadata item. Item name field is set to “score,” content
type to MIME type “audio/midi,” and content encoding to
“mid.” Table 1 lists the components supported by SMIF for
formatting the aforementioned data types.

4 IMPLEMENTATION OF THE DECODER AND
PLAYER

This section details the implementation of an SMIF de-
coder as a standalone command line program, as well as
three versions of an SMIF player that also integrates an
SMIF decoder (using web technologies). For these pur-
poses we followed the requirements described in Sec. 2.3.
The three approaches for joint decoding and playing and
their respective technologies are illustrated in Fig. 3. Fig. 4
details the SMIF architecture in relation to a player.

4.1 Decoder
A command line version of the decoder for .smi files

has been developed in C without the use of any external

Fig. 3. (a) Client-side (local), (b) client-side (with server), and (c)
server-side Smart Musical Instruments Format decoding diagrams
with their respective technologies used.

libraries, ensuring compatibility across various operating
systems. The program is composed of two parts: the decoder
and SMI header file used in the encoding process. The
header defines all the structures of the boxes representing
the entire SMI file. The program can properly decode only
files encoded by the SMI encoder.

The main function of the decoder requires an argument
passed in the command line while calling the compiled
program, corresponding to the file name of the SMIF file.
Every box is parsed in order, and if the main boxes (such
as ftyp, mdat, and moov) are present the decoding process
starts. At the moov level all the trak boxes are read and
from the tkhd box volume field of each track (1 for audio,
0 for sensors) the decoder switches between an audio and
sensor decoding type of function. In both cases the parser
searches for the information about the samples and their
corresponding location in the boxes used by the encoder, as
described in Sec. 3.

The main information is stored in the stco (chunk offset
position), stsd (sample description), and stsz (sample size)
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Table 1. Supported components in SMIF (in bold the formats currently implemented).

Type Component Name Abbreviation Specification

File Format ISO Based Media File Format ISO-BMFF ISO/IEC 14496-12:2008
Audio MPEG-4 Audio AAC Profile AAC ISO/IEC 14496–3:2005

MPEG-D SAOC SAOC ISO/IEC 23003–2:2010
MPEG-1 Audio Layer III MP3 ISO/IEC 11172–3:1993
PCM PCM ···

Sensor PCM PCM ···
Static Metadata Turtle Resource Description Framework Data Model TTL RDF1.1 REC 25/02/2014
Dynamic Metadata Musical Instrument Digital Interface MIDI ISO/IEC 14772-1:1997

AAC, Advanced audio coding; PCM, Pulse-code modulation; SAOC, Spacial Audio Object Coding.

boxes. The information from sample description and size is
used to create a new WAVE header that will be concatenated
to the media data. Chunk offset position indicates the media
data location in the mdat box. The size of the chunk is
determined from the information about the samples and
all of the data is written to the new file. In the case of an
audio file the name generated is “a” plus the number of
the audio track (e.g., “a1.wav”); in the case of a sensor
file it corresponds to “s” plus the number of the referenced
audio track and number of the sensor track separated by an
underscore (e.g., “s1 1.wav” in the case of the first sensor
referencing the first audio track).

Once all the trak boxes are parsed and decoded, the parser
searches for a group container, where the audio and sensor
groups are defined by indicating their corresponding IDs.
Subsequently, the meta boxes at moov level are analyzed. If
the handler name is set to “ttl,” the decoder tries to create a
Turtle RDF file, reading the information right below the size
and type fields of the turtle box, placed next to the handler
box; if the handler name is set to “midi,” the decoder reads
the information about the location in the mdat box and size
of the MIDI polyphonic file from the Item Location Box. In
both cases the data from the original metadata files is stored
entirely in the SMI boxes, so no additional information
needs to be added by the decoder. The two optional files
are then written respectively as “preset.ttl” and “midi.mid”
and saved along the rest of the tracks in the output directory.

4.2 Player
With respect to the requirements mentioned in Sec. 2.3

and the aforementioned discussion on the related options
considered for a cross-platform and cross-browser SMIF
player implementation, we adopted and extended the IM
AF player approach reported in [28]. The main extension
of the player is the usage of Node.js technology to create
the server that decodes (in the server-side case) the .smi
file and listens to incoming OSC messages, as well as the
reliance on external APIs and modules with the “require”
method. Node.js is an open-source, cross-platform, back-
end JavaScript runtime environment that runs on the V8
engine and executes JavaScript code outside a web browser.
The WebSocket and Express modules are used to host the
web server.

To send and receive messages in OSC format using val-
ues generated by the sensor data of the .smi file, we used

Fig. 4. Smart Musical Instruments Format (SMIF) architecture:
(a) the different types of media data supported in the SMIF file
format are shown; (b) the SMIF player is shown, including the
corresponding decoders/parsers of the media data in the SMIF file
format.

the osc.js library. In the client-side version it was incorpo-
rated inside the web page, while in the server-side case it
was imported by the Node.js server. Other Node.js inter-
nal libraries are used by the server, such as “file-system,”
“child-process,” and “body-parser” to read the file and ex-
ecute the compiled C decoder described above.

All three approaches are able to decode an .smi file and
perform the basic functionalities of the format, as well as
read the sensor tracks and forward their values to a port
of the local machine via OSC. Regarding the latter, the
values of the sensor tracks are passed as a float argument,
describing the state of a given sensor, and sent as an OSC
message to an address specified by “/sensor #.”

4.2.1 Client-Side (Local)
The first version of the player is implemented entirely

as a locally running web page, using HTML5, CSS, and
JavaScript. The page consists in a file input form and the
empty player, with a play/stop button as well as a box con-
taining title and time information. In this case the decoder is
implemented as a JavaScript parser that reads all the tracks
in the file and stores the corresponding information in mem-
ory. A Web Audio buffer is created and the waveforms of
each audio track are plotted alongside their volume sliders,
enabling easy tracks mixing by the user; while the data of
each sensor track is prepared to be sent as an OSC mes-
sage to the localhost via a user datagram protocol (UDP)
broadcast.
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4.2.2 Client-Side (With Server)
The second version is a minor variation of the local web

page, consisting of the possibility to request and download
the .smi file from the server. After downloading, the process
of the player is the same as in the first case. The OSC
messages sent by the local machine are then received by the
server, which can repurpose it for the wanted application.

4.2.3 Server-Side
The third version of the SMI player relies heavily on

the Node.js server. The web server contains the .smi file
and C version of the decoder in its local directory; the
local page is much lighter than the first two versions and it
initially allows only the uploading of the .smi file. When the
user inputs the file, the server starts the decoding process
by executing the compiled version of the C decoder and
redirects the user to the player page, where the tracks are
plotted as the audio files are created. Then each audio and
sensor buffer is returned to the web application, allowing
the user to play the audio data and send the sensor data as
OSC messages over a UDP broadcast.

5 DISCUSSION AND CONCLUSION

In this paper we built an application around IM AF, being
aware that our work is not fitting in any current standard.
Some components of SMIF are compliant with ISOBMFF,
namely the audio and sensor tracks. Moreover we adopted
the IM AF’s grouping feature to group sensor and audio
tracks (which can be activated or deactivated by means of
a toggle in the player). We also implemented the IM AF’s
mixing capability for modifying the volume of the audio
tracks, so the end users via one of the provided players can
create their own mix, in accordance with the requirements
that were defined.

Components that are not compliant are the dynamic
metadata for the SMI’s engine configuration (in the form of
a Turtle file) and polyphonic MIDI scores (in the form of
a MIDI file). Differently from IM AF, we did not include
in SMIF components such as images and lyrics. We also
did not involve interactivity rules that characterize IM AF
(such as those for presets, groups, and mixing, which are
imposed by the music composers with the aim of fitting
their artistic creation). These could be the object of future
implementations if we notice the need to reformulate our
requirements for SMIF.

We conducted a number of tests to find out the number
of audio and sensor tracks that the application is capable
of decoding and playing at the same time. Both desktop
browsers that have been tested (Chromium and Firefox) al-
low up to 16 simultaneously decoded audio tracks, although
at higher numbers of total tracks the playback quality drops
considerably. As for the sensor tracks, the goal was set
to eight simultaneous tracks, but the application could not
sustain the preset packet rate of 1 kHz per track. Plausibly
the reason behind this behavior may be that the osc.js li-
brary is too heavy or browsers tested do not support such
rates. With lower sample rates (e.g., 100 packets per sec-

ond), the player successfully sends up to four sensor tracks
to localhost synchronized to the audio using the JavaScript
setInterval timer, resulting in a good quality playback in
the case of eight audio tracks.

The limitations of the encoder are given by the 4CC tags
of the sensor names (“sn01” to “sn99”) and, in the case
of very large files, Chunk Offset and Chunk Size values.
Being 32-bit unsigned integer fields, offset and size larger
than UINT32 MAX have to be set to a larger variable (64
bits), as for the ISOBMFF specification (currently not im-
plemented); this means that up to 99 sensors and 16 audio
tracks can be encoded simultaneously, with a maximum
total file size of about 4 gigabytes.

These results are in full agreement with the maximum
number of simultaneously decoded audio tracks specified
in the IM AF standard, where up to 16 tracks are supported
for desktop applications (im11), and are within the limit of
encoder and decoder features, while for the limits related
to sensors, a deeper investigation is required to identify the
most efficient and optimized technology that can send OSC
packets at higher rates.

As the fields of the IoMusT and SMIs emerge, there is
a need for realizing standardization activities, given their
crucial role for enabling interoperability. However today
standardization activities are in vast part unrealized within
these two fields [11]. The SMIF format, encoder, and de-
coder reported in this paper represent a preliminary step
toward a discussion about standardizations related to the
emerging family of smart musical instruments. The pro-
posed format for the exchange of content generated by a
smart instrument would enable novel interactive applica-
tions such as the one mentioned in Sec. 1.3.

It is worth noticing that this paper focused on a format
for individual instruments while the focus could also be
directed toward the exchange of files containing content
from multiple smart musical instruments. This matter will
be the object of our future investigations. The code and
documentation of this study are freely available online.5
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